Skip to main content
Log in

Reducing electrowetting-on-dielectric actuation voltage using a novel electrode shape and a multi-layer dielectric coating

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents design and fabrication of an electrowetting-on-dielectric (EWOD) device using a novel electrode shape and a multi-layer dielectric coating that reduce the actuation voltage of the device to less than 12.6 V. The fabrication of the EWOD electrodes is carried out in several steps including laser exposure, wet developing, etching, and stripping. A high-dielectric-constant multi-layer dielectric coating containing a 770 nm thick Polyvinylidene difluoride (PVDF) layer and a 1 µm thick Cyanoethyl pullulan (CEP) layer, is deposited on the EWOD electrodes for insulation. This multi-layer dielectric structure exhibits a high capacitance per unit area, and the novel electrode shape changes the actuation force at the droplet contact line reducing the voltage required to operate the device. In addition, an overlaying Teflon layer of 50 nm is placed on top of the dielectric structure to provide a hydrophobic surface for droplet manipulation. It is observed from the experiments that the electrode shape and the dielectric structure have contributed to the reduction of the actuation voltage of the EWOD device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Accardo A, Mecarini F, Leoncini M, Brandi F, Di Cola E, Burghammer M et al (2013) Fast, active droplet interaction: coalescence and reactive mixing controlled by electrowetting on a superhydrophobic surface. Lab on a Chip 13(3):332–335

    Article  Google Scholar 

  • Ahamedi M, Ben-Mrad R, Sullivan P (2013) Electrowetting on dielectric (EWOD)-based thermo-responsive microvalve for interfacing droplet flow with continuous flow. J Microelectromech Syst 22(3):536–541

    Article  Google Scholar 

  • Bansal S, Sen P (2014) Non-axisymmetric oscillations of droplets in electrowetting-on-dielectric. In: Proceedings of IEEE 2nd International Conference on Emerging Electronics (ICEE), pp. 1–4

  • Berge B (1993) Electrocapillarité et mouillage de films isolants par l’eau. Comptes rendus de l’Académie des sciences, Série 2, Mécanique, Physique, Chimie, Sciences de l’univers. Sci Terre 317(2):157–163

    Google Scholar 

  • Bormashenko E, Pogreb R, Bormashenko Y, Grynyov R, Gendelman O (2014) Low voltage reversible electrowetting exploiting lubricated polymer honeycomb substrates. Applied Physics Letters 104(17):171601–171603

    Article  Google Scholar 

  • Bourquin Y, Reboud J, Wilson R, Cooper JM (2010) Tuneable surface acoustic waves for fluid and particle manipulations on disposable chips. Lab Chip 10(15):1898–1901

    Article  Google Scholar 

  • Caputo D, de Cesare G, Lovecchio N, Scipinotti R, Nascetti A (2013) Electrowetting-on-dielectric system based on polydimethylsiloxane. In: Proceedings of 5th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 99–103

  • Chandee C, Ugsornrat K, Uyawapee P, Pogfai T, Maturos T, Pokarattakul D et al. (2012) Single plate electrowetting on dielectric biochip. In: Proceedings of IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC), pp. 1–4

  • Chen J, Yu Y, Li J, Lai Y, Zhou J (2012) Size-variable droplet actuation by interdigitated electrowetting electrode. Appl Phys Lett 101(23):234102

    Article  Google Scholar 

  • Ding X, Li P, Lin SCS, Stratton ZS, Nama N, Guo F et al (2013) Surface acoustic wave microfluidics. Lab Chip 13(18):3626–3649

    Article  Google Scholar 

  • Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–281

    Article  Google Scholar 

  • George SM, Moon H (2015) Alginate hydrogel based 3-dimensional cell culture and chemical screening platform using digital microfluidics. In: Proceedings of 28th IEEE International Conference on Micro Electro Mechanical Systems, pp. 443–446

  • Jang L-S, Hsu C-Y, Chen C-H (2009) Effect of electrode geometry on performance of EWOD device driven by battery-based system. Biomed Microdevices 11(5):1029–1036

    Article  Google Scholar 

  • Li Y, Mita Y, Haworth LI, Parkes W, Kubota M, Walton AJ (2009) Test structure for characterizing low voltage coplanar EWOD system. IEEE Trans Semicond Manuf 22(1):88–95

    Article  Google Scholar 

  • Lin Y-Y, Evans RD, Welch E, Hsu B-N, Madison AC, Fair RB (2010) Low voltage electrowetting-on-dielectric platform using multi-layer insulators. Sens Actuators B Chem 150(1):465–470

    Article  Google Scholar 

  • Long Z, Shetty AM, Solomon MJ, Larson RG (2009) Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface. Lab Chip 9(11):1567–1575

    Article  Google Scholar 

  • Mohammed MI, Desmulliez MPY (2014) Characterization and theoretical analysis of rapidly prototyped capillary action autonomous microfluidic systems. J Microelectromechanical Syst 23(6):1408–1416

    Article  Google Scholar 

  • Moon H, Cho SK, Garrell RL, Kim CJ (2002) Low voltage electrowetting-on-dielectric. J Appl Phys 92:4080–4087

    Article  Google Scholar 

  • Okochi M, Tsuchiya H, Kumazawa F, Shikida M, Honda H (2010) Droplet-based gene expression analysis using a device with magnetic force-based-droplet-handling system. J Biosci Bioeng 109:193–197

    Article  Google Scholar 

  • Park SY, Teitell MA, Chiou EP (2010) Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns. Lab Chip 10(13):1655–1661

    Article  Google Scholar 

  • Pei SN, Valley JK, Neale SL, Jamshidi A, Hsu HY, Wu MC (2010) Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets. In: IEEE 23rd International Conference on Micro Electro Mechanical Systems, pp. 252–255

  • Pei SN, Valley JK, Wang YL, Wu MC (2015) Distributed circuit model for multi-color light-actuated opto-electrowetting microfluidic device. J Lightwave Technol 33(16):3486–3493

    Article  Google Scholar 

  • Quinn A, Sedev R, Ralston J (2005) Contact angle saturation in electrowetting. J Phys Chem B 109(13):6268–6275

    Article  Google Scholar 

  • Rajabi N, Dolatabadi A (2010) A novel electrode shape for electrowetting-based microfluidics. Colloids Surf A 365(1):230–236

    Article  Google Scholar 

  • Samad MF, Kouzani AZ (2014) Design and analysis of a low actuation voltage electrowetting-on-dielectric microvalve for drug delivery applications. In: Proceedings of 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4423–4426

  • Shabani R, Cho HJ (2013) Active surface tension driven micropump using droplet/meniscus pressure gradient. Sens Actuators B Chem 180:114–121

    Article  Google Scholar 

  • Shah GJ, Veale JL, Korin Y, Reed EF, Gritsch HA (2010) Specific binding and magnetic concentration of CD8+ T-lymphocytes on electrowetting-on-dielectric platform. Biomicrofluidics 4(4):044106

    Article  Google Scholar 

  • Sohail S, Das D, Das S, Biswas K (2011) Electrowetting-on-dielectric induced droplet actuation in M × N array of electrode. COMSOL Conference

  • Sohail S, Das D, Das S, Biswas K (2014) Study of PDMS as dielectric layer in electrowetting devices, In: Physics of Semiconductor Devices, Springer, Berlin, pp. 487–490

  • Vasudev A, Zhe J (2009) A low voltage capillary microgripper using electrowetting. In: Proceedings of International Solid-State Sensors, Actuators and Microsystems Conference, pp. 825–828

  • Wang Z, Zhe J (2011) Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab Chip 11(7):1280–1285

    Article  Google Scholar 

  • Wang G, Teng D, Yi-Tse L, Yi-Wen L, Yingchieh H, Chen-Yi L (2014) Field-programmable lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnol 8(3):163–171

    Article  Google Scholar 

  • Witters D, Vergauwe N, Vermeir S, Ceyssens F, Liekens S, Puers R et al (2011) Biofunctionalization of electrowetting-on-dielectric digital microfluidic chips for miniaturized cell-based applications. Lab Chip 11(16):2790–2794

    Article  Google Scholar 

  • Zhang Y, Wang TH (2012) Droplet immobilization, splitting, metering and aliquoting with surface energy traps created using SU8 shadow mask. Proceedings of MicroTAS, pp. 73–75

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Z. Kouzani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samad, M.F., Kouzani, A.Z., Hossain, M.F. et al. Reducing electrowetting-on-dielectric actuation voltage using a novel electrode shape and a multi-layer dielectric coating. Microsyst Technol 23, 3005–3013 (2017). https://doi.org/10.1007/s00542-016-3087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3087-9

Keywords

Navigation