Skip to main content
Log in

A survey of dynamic parameter setting methods for nature-inspired swarm intelligence algorithms

  • Review Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Parameter settings for nature-inspired optimization algorithms are essential for their effective performance. Evolutionary algorithms and swarm intelligence algorithms are prominent types of nature-inspired optimization. There are comprehensive reviews of parameter setting techniques for evolutionary algorithms. Counterparts providing an overview of parameter setting techniques for swarm intelligence algorithms are needed also. Therefore, in this paper, we provide a critical and comprehensive review, focusing in particular on dynamic parameter setting techniques. The paper describes a variety of swarm intelligence algorithms and parameter setting approaches that have been applied to them. This review simplifies the selection of parameter setting techniques for each algorithm by collecting them in a single document and classifying them under a taxonomy. Recommendations for parameter setting approach selection are provided in this review. We explore the open problems related to dynamic parameter setting techniques for swarm intelligence optimization and discuss the trade-off between run-time computation and flexibility of these algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdullah S, Alzaqebah M (2013) A hybrid self-adaptive bees algorithm for examination timetabling problems. Appl Soft Comput 13(8):3608–3620

    Article  Google Scholar 

  2. Angeline PJ (1998) Using selection to improve particle swarm optimization. In: Proceedings of IEEE international conference on evolutionary computation, Citeseer, pp 84–89

  3. Bansal JC, Sharma H, Jadon SS, Clerc M (2014) Spider monkey optimization algorithm for numerical optimization. Memet Comput 6(1):31–47

    Article  Google Scholar 

  4. Bartz-Beielstein T, Parsopoulos KE, Vrahatis MN (2004) Analysis of particle swarm optimization using computational statistics. In: Proceedings of the international conference of numerical analysis and applied mathematics (ICNAAM 2004), pp 34–37

  5. Beielstein T, Parsopoulos KE, Vrahatis MN (2002) Tuning pso parameters through sensitivity analysis. Universität Dortmund, Tech. rep

  6. Birattari M, Stützle T, Paquete L, Varrentrapp K (2002) A racing algorithm for configuring metaheuristics. In: Proceedings of the 4th annual conference on genetic and evolutionary computation, Morgan Kaufmann Publishers Inc., pp 11–18

  7. Biswas A, Dasgupta S, Das S, Abraham A (2007) Synergy of PSO and bacterial foraging optimization a comparative study on numerical benchmarks. Innovations in hybrid intelligent systems. Springer, Berlin, pp 255–263

    Chapter  Google Scholar 

  8. Blackwell T (2007) Particle swarm optimization in dynamic environments. Evolutionary computation in dynamic and uncertain environments. Springer, Berlin, pp 29–49

    Chapter  Google Scholar 

  9. Blackwell T, Branke J (2004) Multi-swarm optimization in dynamic environments. In: Raidl GR et al (eds) Applications of evolutionary computing, vol 3005. EvoW6orkshops. Springer, Berlin, pp 489–500

    Chapter  Google Scholar 

  10. Blackwell T, Branke J, Li X (2008) Particle swarms for dynamic optimization problems. Swarm intelligence. Springer, Berlin, pp 193–217

    Chapter  Google Scholar 

  11. Blackwell TM, Bentley PJ et al (2002) Dynamic search with charged swarms. In: GECCO, Citeseer, vol 2, pp 19–26

  12. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  13. Cáceres LP, López-Ibáñez M, Stützle T (2015) Ant colony optimization on a limited budget of evaluations. Swarm Intell 9(2–3):103–124

    Article  Google Scholar 

  14. Castellani M, Pham QT, Pham DT (2012) Dynamic optimisation by a modified bees algorithm. Proc Inst Mech Eng Part I J Syst Control Eng 226(7):956–971

    Article  Google Scholar 

  15. Chen XH, Lee WP, Liao CY, Dai JT (2007) Adaptive constriction factor for location-related particle swarm. In: Proceedings of the 8th Conference on 8th WSEAS international conference on evolutionary computing, vol 8. World Scientific and Engineering Academy and Society (WSEAS), pp 307–313

  16. Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation, CEC 99, vol 3. IEEE, pp 1951–1957

  17. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

  18. Collins LM, Dziak JJ, Li R (2009) Design of experiments with multiple independent variables: a resource management perspective on complete and reduced factorial designs. Psychol Methods 14(3):202

    Article  Google Scholar 

  19. Darwin C (1859) On the origin of species by means of natural selection. Murray, London

    Google Scholar 

  20. Das S, Mullick SS, Suganthan P (2016) Recent advances in differential evolution—an updated survey. Swarm Evol Comput 27:1–30

    Article  Google Scholar 

  21. Dasgupta S, Das S, Abraham A, Biswas A (2009) Adaptive computational chemotaxis in bacterial foraging optimization: an analysis. IEEE Trans Evol Comput 13(4):919–941

    Article  Google Scholar 

  22. Dasgupta S, Das S, Biswas A, Abraham A (2010) Automatic circle detection on digital images with an adaptive bacterial foraging algorithm. Soft Comput 14(11):1151–1164

    Article  Google Scholar 

  23. Deb K (1995) Optimization for engineering design. Prentice-Hall, India

    Google Scholar 

  24. Del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez JC, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput 12(2):171–195

    Article  Google Scholar 

  25. Dorigo M (1992) Optimization, learning and natural algorithms. PhD thesis, Politecnico di Milano, Italy

  26. Dorigo M, Gambardella LM (1997) Ant colonies for the travelling salesman problem. BioSystems 43(2):73–81

    Article  Google Scholar 

  27. Dorigo M, Stützle T (2009) Ant colony optimization: overview and recent advances. Techreport, IRIDIA, Universite Libre de Bruxelles

  28. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B Cybern 26(1):29–41

    Article  Google Scholar 

  29. Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 congress on evolutionary computation, vol 1. IEEE, pp 84–88

  30. Eiben AE, Smit SK (2011a) Evolutionary algorithm parameters and methods to tune them. Autonomous search. Springer, Berlin, pp 15–36

    Chapter  Google Scholar 

  31. Eiben AE, Smit SK (2011b) Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol Comput 1(1):19–31

    Article  Google Scholar 

  32. Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141

    Article  Google Scholar 

  33. El-Gallad A, El-Hawary M, Sallam A, Kalas A (2002) Enhancing the particle swarm optimizer via proper parameters selection. In: Canadian conference on electrical and computer engineering, IEEE CCECE 2002, vol 2. IEEE, Canada, pp 792–797

  34. Erskine A, Herrmann JM (2014) Crips: Critical dynamics in particle swarm optimization. arXiv preprint arXiv:14026888

  35. Esmin AA, Coelho RA, Matwin S (2015) A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artif Intell Rev 44(1):23–45

    Article  Google Scholar 

  36. Fan H, Shi Y (2001) Study on vmax of particle swarm optimization. In: Proc. Workshop on particle swarm optimization, Purdue School of Engineering and Technology

  37. Farhat I, El-Hawary M (2010) Dynamic adaptive bacterial foraging algorithm for optimum economic dispatch with valve-point effects and wind power. IET Gener Transm Distrib 4(9):989–999

    Article  Google Scholar 

  38. Favaretto D, Moretti E, Pellegrini P (2009) On the explorative behavior of max–min ant system. In: International workshop on engineering stochastic local search algorithms. Springer, pp 115–119

  39. Fister Jr I, Yang XS, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. arXiv preprint arXiv:13074186

  40. Flood MM (1956) The traveling-salesman problem. Oper Res 4(1):61–75

    Article  MathSciNet  MATH  Google Scholar 

  41. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman & Co., New York

    MATH  Google Scholar 

  42. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–72

    Article  Google Scholar 

  43. Hu M, Wu T, Weir JD (2012) An intelligent augmentation of particle swarm optimization with multiple adaptive methods. Inf Sci 213:68–83

    Article  Google Scholar 

  44. Hu M, Wu TF, Weir JD (2013) An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evol Comput 17(5):705–720

    Article  Google Scholar 

  45. Hu X, Eberhart R (2002) Multiobjective optimization using dynamic neighborhood particle swarm optimization. In: Evolutionary computation. IEEE, pp 1677–1681

  46. Hussain K, Salleh MNM, Cheng S, Shi Y (2018) On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3592-0

    Article  Google Scholar 

  47. Hussein WA, Sahran S, Abdullah SNHS (2014) Patch-levy-based initialization algorithm for bees algorithm. Appl Soft Comput 23:104–121

    Article  Google Scholar 

  48. Hussein WA, Sahran S, Sheikh Abdullah S (2015) An improved bees algorithm for real parameter optimization. Int J Adv Comput Sci Appl 6:23–39

    Google Scholar 

  49. Jevtié A, Andina D (2010) Adaptive artificial ant colonies for edge detection in digital images. In: IECON 2010-36th annual conference on IEEE industrial electronics society. IEEE, pp 2813–2816

  50. Jhang JY, Lin CJ, Lin CT, Young KY (2018) Navigation control of mobile robots using an interval type-2 fuzzy controller based on dynamic-group particle swarm optimization. Int J Control Autom Syst 16(5):2446–2457

    Article  Google Scholar 

  51. Jiao R, Sun Y, Sun J, Jiang Y, Zeng S (2018) Antenna design using dynamic multi-objective evolutionary algorithm. IET Microw Antennas Propag 12(13):2065–2072

    Article  Google Scholar 

  52. Karafotias G, Hoogendoorn M, Eiben ÁE (2015) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput 19(2):167–187

    Article  Google Scholar 

  53. Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: IEEE international conference on evolutionary computation, 1997. IEEE, pp 303–308

  54. Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 congress on evolutionary computation, 1999, CEC 99, vol 3. IEEE, pp 1931–1938

  55. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings, IEEE international conference on neural networks, vol 4. IEEE, pp 1942–1948

  56. Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of the 2002 congress on evolutionary computation, CEC’02, vol 2. IEEE, pp 1671–1676

  57. Kennedy J, Kennedy JF, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann, Burlington

    Google Scholar 

  58. Khanmirzaei Z, Teshnehlab M, Sharifi A (2010) Modified honey bee optimization for recurrent neuro-fuzzy system model. In: 2010 The 2nd international conference on computer and automation engineering (ICCAE), vol 5. IEEE, pp 780–785

  59. Kiranyaz S, Pulkkinen J, Gabbouj M (2011) Multi-dimensional particle swarm optimization in dynamic environments. Expert Syst Appl 38(3):2212–2223

    Article  Google Scholar 

  60. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT Press, Cambridge

    MATH  Google Scholar 

  61. Kramer O (2010) Evolutionary self-adaptation: a survey of operators and strategy parameters. Evol Intell 3(2):51–65

    Article  MATH  Google Scholar 

  62. Krohling RA (2005) Gaussian particle swarm with jumps. In: The 2005 IEEE congress on evolutionary computation, vol 2. IEEE, pp 1226–1231

  63. Langton CG (1990) Computation at the edge of chaos: phase transitions and emergent computation. Phys D Nonlinear Phenom 42(1):12–37

    Article  MathSciNet  Google Scholar 

  64. Li G, Qian C, Jiang C, Lu X, Tang K (2018) Optimization based layer-wise magnitude-based pruning for dnn compression. In: IJCAI, pp 2383–2389

  65. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  66. Lin FT, Kao CY, Hsu CC (1993) Applying the genetic approach to simulated annealing in solving some np-hard problems. IEEE Trans Syst Man Cybern 23(6):1752–1767

    Article  Google Scholar 

  67. Lin JH, Chou CW, Yang CH, Tsai HL et al (2012) A chaotic levy flight bat algorithm for parameter estimation in nonlinear dynamic biological systems. J Comput Inf Technol 2(2):56–63

    Google Scholar 

  68. López-Ibánez M, Dubois-Lacoste J, Stützle T, Birattari M (2011) The irace package, iterated race for automatic algorithm configuration. Tech. rep, Citeseer

  69. López-Ibáñez M, Dubois-Lacoste J, Cáceres LP, Birattari M, Stützle T (2016) The irace package: iterated racing for automatic algorithm configuration. Oper Res Perspect 3:43–58

    Article  MathSciNet  Google Scholar 

  70. Lovbjerg M, Rasmussen TK, Krink T (2001) Hybrid particle swarm optimiser with breeding and subpopulations. Proc Genetic Evol Comput Conf Citeseer 2001:469–476

    Google Scholar 

  71. Majhi R, Panda G, Majhi B, Sahoo G (2009) Efficient prediction of stock market indices using adaptive bacterial foraging optimization (abfo) and bfo based techniques. Expert Syst Appl 36(6):10097–10104

    Article  Google Scholar 

  72. Melin P, Olivas F, Castillo O, Valdez F, Soria J, Valdez M (2013) Optimal design of fuzzy classification systems using pso with dynamic parameter adaptation through fuzzy logic. Expert Syst Appl 40(8):3196–3206

    Article  Google Scholar 

  73. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8(3):204–210

    Article  Google Scholar 

  74. Mezura-Montes E, López-Dávila EA (2012) Adaptation and local search in the modified bacterial foraging algorithm for constrained optimization. In: 2012 IEEE congress on evolutionary computation, IEEE, pp 1–8

  75. Mirjalili S (2015a) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  76. Mirjalili S (2015b) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Article  Google Scholar 

  77. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    Article  Google Scholar 

  78. Mirjalili S, Lewis A (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Appl 25(7–8):1569–1584

    Article  Google Scholar 

  79. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  80. Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New Delhi

    Google Scholar 

  81. Musilek P, Krömer P, Bartoň T (2015) Review of nature-inspired methods for wake-up scheduling in wireless sensor networks. Swarm Evol Comput 25:100–118

    Article  Google Scholar 

  82. Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol Comput 16:1–18

    Article  Google Scholar 

  83. Nápoles G, Grau I, Bello M, Bello R (2014) Towards swarm diversity: random sampling in variable neighborhoods procedure using a Lévy distribution. Computación y Sistemas 18(1):79–95

    Google Scholar 

  84. Nguyen TT, Yang S, Branke J (2012) Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol Comput 6:1–24

    Article  Google Scholar 

  85. Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11(4):3658–3670

    Article  Google Scholar 

  86. Olivas F, Valdez F, Castillo O (2015) Ant colony optimization with parameter adaptation using fuzzy logic for tsp problems. Design of intelligent systems based on fuzzy logic. Neural networks and nature-inspired optimization. Springer, Berlin, pp 593–603

    Google Scholar 

  87. Olivas F, Valdez F, Castillo O, Melin P (2016) Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft Comput 20(3):1057–1070

    Article  Google Scholar 

  88. Olorunda O, Engelbrecht AP (2008) Measuring exploration/exploitation in particle swarms using swarm diversity. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). IEEE, pp 1128–1134

  89. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst 22(3):52–67

    Article  MathSciNet  Google Scholar 

  90. Pavlyukevich I (2007) Lévy flights, non-local search and simulated annealing. J Comput Phys 226(2):1830–1844

    Article  MathSciNet  MATH  Google Scholar 

  91. Pham D, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2011) The bees algorithm—a novel tool for complex optimisation. In: Intelligent production machines and systems-2nd I* PROMS virtual international conference, Elsevier, p 454

  92. Pham DT, Castellani M (2009) The bees algorithm: modelling foraging behaviour to solve continuous optimization problems. Proc Inst Mech Eng Part C J Mech Eng Sci 223(12):2919–2938

    Article  Google Scholar 

  93. Pham DT, Soroka AJ, Ghanbarzadeh A, Koc E, Otri S, Packianather M (2006) Optimising neural networks for identification of wood defects using the bees algorithm. In: 2006 4th IEEE international conference on industrial informatics. IEEE, pp 1346–1351

  94. Pham Q (2007) Using statistical analysis to tune an evolutionary algorithm for dynamic optimization with progressive step reduction. Comput Chem Eng 31(11):1475–1483

    Article  Google Scholar 

  95. Pham QT, Pham DT, Castellani M (2012) A modified bees algorithm and a statistics-based method for tuning its parameters. Proc Inst Mech Eng Part I J Syst Control Eng 226(3):287–301

    Article  Google Scholar 

  96. Pluhacek M, Senkerik R, Davendra D, Oplatkova ZK, Zelinka I (2013a) On the behavior and performance of chaos driven pso algorithm with inertia weight. Comput Math Appl 66(2):122–134

    Article  MathSciNet  Google Scholar 

  97. Pluhacek M, Senkerik R, Zelinka I, Davendra D (2013b) Chaos PSO algorithm driven alternately by two different chaotic maps-an initial study. In: IEEE congress on evolutionary computation, pp 2444–2449

  98. Pluhacek M, Senkerik R, Zelinka I (2014) Particle swarm optimization algorithm driven by multichaotic number generator. Soft Comput 18(4):631–639

    Article  Google Scholar 

  99. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57

    Article  Google Scholar 

  100. Pornsing C, Sodhi MS, Lamond BF (2016) Novel self-adaptive particle swarm optimization methods. Soft Comput 20(9):3579–3593

    Article  Google Scholar 

  101. Potter MA, Jong KAD (2000) Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput 8(1):1–29

    Article  Google Scholar 

  102. Richer TJ, Blackwell TM (2006) The Lévy particle swarm. In: IEEE congress on evolutionary computation, CEC 2006. IEEE, pp 808–815

  103. Ruz GA, Goles E (2013) Learning gene regulatory networks using the bees algorithm. Neural Comput Appl 22(1):63–70

    Article  Google Scholar 

  104. Şahin E (2004) Swarm robotics: from sources of inspiration to domains of application. International workshop on swarm robotics. Springer, Berlin, pp 10–20

    Google Scholar 

  105. Sajja PS, Akerkar R (2013) Bio-inspired models for semantic web. Swarm intelligence and bio-inspired computation: theory and applications. Elsevier, Wlatham, pp 273–294

    Chapter  Google Scholar 

  106. Sanyal N, Chatterjee A, Munshi S (2011) An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation. Expert Syst Appl 38(12):15489–15498

    Article  Google Scholar 

  107. Schrijver A (2000) A course in combinatorial optimization. TU Delft

  108. Senanayake M, Senthooran I, Barca JC, Chung H, Kamruzzaman J, Murshed M (2016) Search and tracking algorithms for swarms of robots: a survey. Robot Auton Syst 75:422–434

    Article  Google Scholar 

  109. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: The 1998 IEEE international conference on evolutionary computation proceedings, 1998. IEEE World Congress on Computational Intelligence. IEEE, pp 69–73

  110. Shi Y, Eberhart R (2001) Particle swarm optimization with fuzzy adaptive inertia weight. In: Proceedings of the workshop on particle swarm optimization, vol 1. Purdue School of Engineering and Technology, pp 101–106

  111. Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation, CEC 99, vol 3. IEEE, pp 1945–1950

  112. Sörensen K (2015) Metaheuristics the metaphor exposed. Int Trans Oper Res 22(1):3–18

    Article  MathSciNet  MATH  Google Scholar 

  113. Stützle T, López-Ibánez M, Pellegrini P, Maur M, De Oca MM, Birattari M, Dorigo M (2011) Parameter adaptation in ant colony optimization. Autonomous search. Springer, Berlin, pp 191–215

    Chapter  Google Scholar 

  114. Suganthan PN (1999) Particle swarm optimiser with neighbourhood operator. In: Proceedings of the 1999 congress on evolutionary computation, CEC 99, vol 3. IEEE, pp 1958–1962

  115. Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Congress on evolutionary computation, CEC2004, vol 1. IEEE, pp 325–331

  116. Sun J, Xu W, Feng B (2005) Adaptive parameter control for quantum-behaved particle swarm optimization on individual level. In: 2005 IEEE international conference on systems, man and cybernetics, vol 4. IEEE, pp 3049–3054

  117. Talbi EG (2009) Metaheuristics: from design to implementation, vol 74. Wiley, New York

    Book  MATH  Google Scholar 

  118. Tang D, Dai M, Salido MA, Giret A (2016) Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Comput Ind 81:82–95. https://doi.org/10.1016/j.compind.2015.10.001

    Article  Google Scholar 

  119. Tang K, Yang P, Yao X (2016) Negatively correlated search. IEEE J Sel Areas Commun 34(3):542–550. https://doi.org/10.1109/JSAC.2016.2525458

    Article  Google Scholar 

  120. Tanweer M, Suresh S, Sundararajan N (2016) Dynamic mentoring and self-regulation based particle swarm optimization algorithm for solving complex real-world optimization problems. Inf Sci 326:1–24. https://doi.org/10.1016/j.ins.2015.07.035

    Article  Google Scholar 

  121. Thangeda P, Bhattacharya AK, Gopal R, Kumar RA (2018) Synthesis of optimal trajectories in aerial engagements using differential evolution. IFAC-PapersOnLine 51(1):90–97. https://doi.org/10.1016/j.ifacol.2018.05.016

    Article  Google Scholar 

  122. Tian J, Tan Y, Zeng J, Sun C, Jin Y (2018) Multi-objective infill criterion driven gaussian process assisted particle swarm optimization of high-dimensional expensive problems. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2018.2869247

    Article  Google Scholar 

  123. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6):317–325

    Article  MathSciNet  MATH  Google Scholar 

  124. Tripathi PK, Bandyopadhyay S, Pal SK, (2007) Adaptive multi-objective particle swarm optimization algorithm. In: IEEE congress on evolutionary computation, CEC 2007. IEEE, pp 2281–2288

  125. Tsai HC (2014) Novel bees algorithm: stochastic self-adaptive neighborhood. Appl Math Comput 247:1161–1172

    MathSciNet  MATH  Google Scholar 

  126. Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239

    Article  Google Scholar 

  127. Wang G, Chu HE, Zhang Y, Chen H, Hu W, Li Y, Peng X (2015) Multiple parameter control for ant colony optimization applied to feature selection problem. Neural Comput Appl 26(7):1693–1708

    Article  Google Scholar 

  128. Wang Y, Li B, Weise T, Wang J, Yuan B, Tian Q (2011) Self-adaptive learning based particle swarm optimization. Inf Sci 181(20):4515–4538

    Article  MathSciNet  MATH  Google Scholar 

  129. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  130. Wu Q, Zhu Z, Yan X, Gong W (2018) An improved particle swarm optimization algorithm for avo elastic parameter inversion problem. Concurr Comput Pract Exp, p e4987

  131. Wu Y, Liu G, Guo X, Shi Y, Xie L (2017) A self-adaptive chaos and kalman filter-based particle swarm optimization for economic dispatch problem. Soft Comput 21(12):3353–3365

    Article  MATH  Google Scholar 

  132. Xu G (2013) An adaptive parameter tuning of particle swarm optimization algorithm. Appl Math Comput 219(9):4560–4569

    MathSciNet  MATH  Google Scholar 

  133. Yamaguchi T, Yasuda K (2006) Adaptive particle swarm optimization; self-coordinating mechanism with updating information. In: IEEE international conference on systems, man and cybernetics, SMC’06, vol 3. IEEE, pp 2303–2308

  134. Yan X, Zhu Y, Zhang H, Chen H, Niu B (2012) An adaptive bacterial foraging optimization algorithm with lifecycle and social learning. Discret Dyn Nat Soc 2012:1–20

    MATH  Google Scholar 

  135. Yang P, Lu G, Tang K, Yao X (2016) A multi-modal optimization approach to single path planning for unmanned aerial vehicle. In: 2016 IEEE congress on evolutionary computation (CEC), IEEE, pp 1735–1742

  136. Yang P, Tang K, Yao X (2018) Turning high-dimensional optimization into computationally expensive optimization. IEEE Trans Evol Comput 22(1):143–156

    Article  Google Scholar 

  137. Yang Q, Chen WN, Yu Z, Gu T, Li Y, Zhang H, Zhang J (2017) Adaptive multimodal continuous ant colony optimization. IEEE Trans Evol Comput 21(2):191–205

    Article  Google Scholar 

  138. Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, Frome

    Google Scholar 

  139. Yang XS (2010) Firefly algorithm, Levy flights and global optimization. Research and development in intelligent systems XXVI. Springer, Berlin, pp 209–218

    Chapter  Google Scholar 

  140. Yang XS (2012) Efficiency analysis of swarm intelligence and randomization techniques. J Comput Theoret Nanosci 9(2):189–198

    Article  Google Scholar 

  141. Yang XS, He X (2013) Bat algorithm: literature review and applications. Int J Bio-Inspir Comput 5(3):141–149

    Article  Google Scholar 

  142. Yasuda T, Ohkura K, Matsumura Y (2010) Extended PSO with partial randomization for large scale multimodal problems. In: World automation congress (WAC), 2010, IEEE, pp 1–6

  143. Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B (Cybernetics) 39(6):1362–1381

    Article  Google Scholar 

  144. Zheng F, Zecchin A, Newman J, Maier H, Dandy G (2017) An adaptive convergence-trajectory controlled ant colony optimization algorithm with application to water distribution system design problems. IEEE Trans Evol Comput 21(5):773–791

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Duy Phan.

Ethics declarations

Conflict of interest

The authors Han Phan, Kirsten Ellis, Jan Carlo Barca declare that they have no conflict of interest. The author Alan Dorin is a member of the editorial board for the journal Neural Computing and Applications.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 1.

Table 1 Generic symbols and abbreviations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, H.D., Ellis, K., Barca, J.C. et al. A survey of dynamic parameter setting methods for nature-inspired swarm intelligence algorithms. Neural Comput & Applic 32, 567–588 (2020). https://doi.org/10.1007/s00521-019-04229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04229-2

Keywords

Navigation