Skip to main content
Log in

Spiking neural network-based target tracking control for autonomous mobile robots

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a target tracking controller based on spiking neural network is proposed for autonomous robots. This controller encodes the preprocessed environmental and target information provided by CCD cameras, encoders and ultrasonic sensors into spike trains, which are integrated by a three-layer spiking neural network (SNN). The outputs of SNN are generated based on the competition between the forward/backward neuron pair corresponding to each motor, with the weights evolved by the Hebbian learning. The application to target tracking of a mobile robot in unknown environment verifies the validity of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Salaris P, Fontanelli D, Pallottino L, Bicchi A (2010) Shortest paths for a robot with nonholonomic and field-of-view constraints. IEEE Trans Rob 26(2):269–281

    Article  Google Scholar 

  2. Berglund T, Brodnik A, Jonsson H, Staffanson M, Söderkvist I (2010) Planning smooth and obstacle-avoiding B-spline paths for autonomous mining vehicles. IEEE Trans Autom Sci Eng 7(1):167–172

    Article  Google Scholar 

  3. Willms AR, Yang SX (2006) An efficient dynamic system for real-time robot-path planning. IEEE Trans Syst Man Man Cybern Part B Cybern 36(4):755–766

    Article  Google Scholar 

  4. Willms AR, Yang SX (2008) Real-time robot path planning via a distance-propagating dynamic system with obstacle clearance. IEEE Trans Syst Man Man Cybern Part B Cybern 38(3):884–893

    Article  Google Scholar 

  5. Cui M, Wu Z, Xie X, Shi P (2013) Modeling and adaptive tracking for a class of stochastic lagrangian control systems. Automatica 49(3):770–779

    Article  MATH  MathSciNet  Google Scholar 

  6. Chadli M, Aouaouda S, Karimi HR, Shi P (2013) Robust fault tolerant tracking controller design for a VTOL aircraft. J Frankl Inst 350(9):2627–2645

    Article  MATH  MathSciNet  Google Scholar 

  7. Zhuang Y, Li X, Wang W, Chen H (2011) 3D scene reconstruction and motion planning for an autonomous mobile robot in complex outdoor scenes. Int J Innov Comput Inf Control 7(4):1765–1776

    Google Scholar 

  8. Jafar FA, Suzuki Y, Tateno Y, Yokota K, Matsuoka T (2011) An environmental visual features based navigation method for autonomous mobile robots. Int J Innov Comput Inf Control 7(3):1341–1355

    Google Scholar 

  9. Ulrich I, Borenstein J (2000) VFH*: local obstacle avoidance with look-ahead verification. In: IEEE international conference on robotics and automation, San Francisco, USA, pp 2505–2511

  10. Brock O, Khatib O (1999) High-speed navigation using the global dynamic window approach. In: IEEE international conference on robotics and automation, Detroit, USA, pp 341–346

  11. Balch T, Arkin RC (1998) Behavior-based formation control for multi-robot teams. IEEE Trans Robot Autom 14(6):926–939

    Article  Google Scholar 

  12. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1):90–98

    Article  MathSciNet  Google Scholar 

  13. Tsourveloudis NC, Valavanis KP, Hebert T (2001) Autonomous vehicle navigation utilizing electrostatic potential fields and fuzzy logic. IEEE Trans Robot Autom 17(4):490–497

    Article  Google Scholar 

  14. Zhou Y, Er MJ (2008) An evolutionary approach toward dynamic self-generated fuzzy inference systems. IEEE Trans Syst Man Cybern Part B Cybern 38(4):963–969

    Article  Google Scholar 

  15. Hwang C-L, Chang N-W (2008) Fuzzy decentralized sliding-mode control of a car-like mobile robot in distributed sensor-network spaces. IEEE Trans Fuzzy Syst 16(1):97–109

    Article  Google Scholar 

  16. Shen Q, Jiang B, Shi P, Zhao J (2013) Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multiagent systems with time-varying actuator faults. IEEE Trans Fuzzy Syst 22(3):494–504

    Article  Google Scholar 

  17. Astudillo L, Melin P, Castillo O (2013) Chemical optimization paradigm applied to a fuzzy tracking controller for an autonomous mobile robot. Int J Innov Comput Inf Control 9(5):2007–2018

    Google Scholar 

  18. Bugeja MK, Fabri SG, Camilleri L (2009) Dual adaptive dynamic control of mobile robots using neural networks. IEEE Trans Syst Man Cybern Part B Cybern 39(1):129–141

    Article  Google Scholar 

  19. Maass W, Bishop CM (eds) (1999) Pulsed neural networks. MIT Press, Cambridge

    Google Scholar 

  20. Koyama S, Kass RE (2008) Spike train probability models for stimulus-driven leaky integrate-and-fire neurons. Neural Comput 20(7):1776–1795

    Article  MATH  MathSciNet  Google Scholar 

  21. Pawlas Z, Klebanov LB, Prokop M, Lansky P (2008) Parameters of spike trains observed in a short time window. Neural Comput 20(5):1325–1343

    Article  MATH  MathSciNet  Google Scholar 

  22. Brader JM, Senn W, Fusi S (2007) Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural Comput 19(11):2881–2912

    Article  MATH  MathSciNet  Google Scholar 

  23. Lovelace JJ, Cios KJ (2008) A very simple spiking neuron model that allows for modeling of large, complex systems. Neural Comput 20(1):65–90

    Article  MATH  MathSciNet  Google Scholar 

  24. Maass W (1997) Networks of spiking neurons: the third generation of neural network models. Neural Networks 10(9):1659–1671

    Article  Google Scholar 

  25. Maass W (1996) Lower bounds for the computational power of networks of spiking neurons. Neural Comput 8(1):1–40

    Article  MATH  MathSciNet  Google Scholar 

  26. Qu H, Yang SX, Willms AR, Yi Z (2009) Real-time robot path planning based on a modified pulse-coupled neural network model. IEEE Trans Neural Networks 20(11):1724–1739

    Article  Google Scholar 

  27. Floreano D, Mattiussi C (2001) Evolution of spiking neural controllers for autonomous vision-based robots. In: Gomi T (ed) ER 2001, LNCS, vol 2217. Springer, Berlin, pp 38–61

    Google Scholar 

  28. Roggen D, Hofmann S, Thoma Y, Floreano D (2003) Hardware spiking neural network with run-time reconfigurable connectivity in an autonomous robot. In: NASA/Dod conference on evolvable hardware, Chicago, IL, USA, pp 189–198

  29. Hagras H, Pounds-Cornish A, Colley M, Callaghan V, Clarke G (2004) Evolving spiking neural network controllers for autonomous robots. In: IEEE international conference on robotics and automation, New Orleans, LA, pp 4620–4626

  30. Bellis S, Razeeb KM, Saha C, Delaney K et al (2004) FPGA implementation of spiking neural networks-an initial step towards building tangible collaborative autonomous agents. In: IEEE international conference on field-programmable technology, Brisbane, Australia, pp 449–452

  31. Alnajjar F, Murase K (2006) Use-dependent synaptic connection modification in SNN generating autonomous behavior in a Khepera mobile robot. In: IEEE conference on robotics, automation and mechatronics, Bangkok, Thailand

  32. Alnajjar F, Murase K (2008) Sensor-fusion in spiking neural network that generates autonomous behavior in real mobile robot. In: IEEE international joint conference on neural networks, Hong Kong, China, pp 2200–2206

  33. Sasaki H, Kubota N (2006) Virus-evolutionary genetic algorithm for fuzzy spiking neural network of a mobile robot in a dynamic environment. In: SICE-ICASE international joint conference, Busan, Korea, pp 4214–4219

  34. Sasaki H, Kubota N (2009) Distributed behavior learning of multiple mobile robots based on spiking neural network and steady-state genetic algorithm. In: IEEE workshop on robotic intelligence in informationally structured space, Nashville, TN, pp 73–78

  35. Helgadottir LI, Haenicke J, Landgraf T, Rojas R, Nawrot MP (2013) Conditioned behavior in a robot controlled by a spiking neural network. In: 6th international IEEE EMBS conference on neural engineering, San Diego, USA, pp 891–894

  36. Wang X, Hou Z, Lv F, Tan M, Wang Y (2012) A target-reaching controller for mobile robots using spiking neural networks. In: Huang T et al. (eds) ICONIP 2012, Part IV, LNCS 7666, pp 652–659

  37. Yuan Y, Cao Z, Hou Z, Tan M (2008) Forward passageway based collision-free target tracking for mobile robot with local sensing. In: IEEE/RSJ international conference on intelligent robots and systems, Nice, France, pp 255–259

  38. Wang X, Hou Z, Zou A, Tan M, Cheng L (2008) A behavior controller based on spiking neural networks for mobile robots. Neurocomputing 71(4–6):655–666

    Article  Google Scholar 

  39. Kempter R, Gerstner W, van Hemmen JL (1999) Hebbian learning and spiking neurons. Phys Rev E 59(4):4498–4514

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the associate editor and anonymous reviewers for their helpful suggestions and reviews. This work is supported in part by the National Natural Science Foundation of China under Grants 61273352, 61175111, 60805038 and in part by the Open Foundation of the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences under Grants 20130101 and 20140107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Cheng, L., Zhou, C. et al. Spiking neural network-based target tracking control for autonomous mobile robots. Neural Comput & Applic 26, 1839–1847 (2015). https://doi.org/10.1007/s00521-015-1848-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1848-5

Keywords

Navigation