Skip to main content
Log in

Fuzzy region assignment for visual tracking

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this work we propose a new approach based on fuzzy concepts and heuristic reasoning to deal with the visual data association problem in real time, considering the particular conditions of the visual data segmented from images, and the integration of higher-level information in the tracking process such as trajectory smoothness, consistency of information, and protection against predictable interactions such as overlap/occlusion, etc. The objects’ features are estimated from the segmented images using a Bayesian formulation, and the regions assigned to update the tracks are computed through a fuzzy system to integrate all the information. The algorithm is scalable, requiring linear computing resources with respect to the complexity of scenarios, and shows competitive performance with respect to other classical methods in which the number of evaluated alternatives grows exponentially with the number of objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Agrawal R, Imielinski T, Swarmi A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD international conference on management of data, Washington, DC, pp 207–216

  • Angus J, Zhou H, Bea C, Becket-Lemus L, Klose J, Tubbs S, (1993) Genetic algorithms in passive tracking. Claremont Graduate School, Math Clinic Report, May 1993

  • Arulampalam M, Maskell S, Gordon N, Clapp T et al (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Proc 50(2):174–188

    Article  Google Scholar 

  • Aziz AM, Tummala M, Cristi R et al (1999) Fuzzy logic data correlation approach in multisensor-multitarget tracking systems. Signal Process 76(2):195–209

    Article  MATH  Google Scholar 

  • Aziz AM, Elkobba K et al (2007) Fuzzy track-to-track association and track fusion approach in distributed multisensor-multitarget multiple-attribute environment. Signal Process 87(6):1474–1492

    Article  MATH  Google Scholar 

  • Bogner RE, Bouzerdoum A, Pope KJ, Zhu J et al (1998) Association of tracks from over the horizon radar. IEEE Aerosp Electron Syst Mag 13(9):31–35

    Article  Google Scholar 

  • Brodsky T, Cohen R, Cohen-Solal E, Gutta S, Lyons D, Philomin V, Trajkovic M (2001) Visual surveillance in retail stores and in the home. In: Advanced video-based surveillance systems, Chap 4. Kluwer, Boston, pp 50–61

  • Cai Y, de Freitas N, Little J (2006) Robust visual tracking for multiple targets. In: European conference on computer vision 2006, pp 107–118

  • Chang YL, Aggawal JK (1991) 3d structure reconstruction from an ego motion sequence using statistical estimation and detection theory. In: Proc. IEEE workshop on visual motion, pp 268–273

  • Chen YM, Huang HC (2000) Fuzzy logic approach to multisensor data association. Math Comput Simul 52(5–6):399–412

    Article  Google Scholar 

  • Chen HT, Lin HH, Liu TL (2001) Multi-object tracking using dynamical graph matching. Proc IEEE Conf Vis Pattern Recognit 11:210–217

    Google Scholar 

  • Cho J-S, Yun B-J, Yun-Ho Ko Y-H et al (2007) Intelligent video tracking based on fuzzy-reasoning segmentation. Neurocomputing 70(4–6):657–664

    Google Scholar 

  • Cox IJ (1993) A review of statistical data association techniques for motion correspondence. Int J Comput Vis 10(1):53–66

    Article  Google Scholar 

  • Cox IJ, Hingorani SL (1996) An efficient implementation of Reid’s multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking. IEEE Trans Pattern Anal Mach Intell 18(2):138–150

    Article  Google Scholar 

  • Cox IJ, Miller ML et al (1995) On finding ranked assignments with application to MultiTarget tracking and motion correspondence. IEEE Trans Aerosp Electron Syst 32(1):486–489

    Article  Google Scholar 

  • Cucchiara R, Grana C, Patri A, Tardini G, Vezzani G (2004) Using computer vision techniques for dangerous situation detection in domotic applications. In: Proc. IEEE workshop on intelligent distributed surveillance systems, London, pp 1–5

  • da Silva Pires D, Cesar R, Vieira M, Velho L (2005) Tracking and matching connected components from 3d video. In: 18th Brazilian symposium on computer graphics and image processing, 2005. SIBGRAPI 2005, 9–12 Oct 2005, pp 257–264

  • Ermin S, Sundararajan N, Saratchandran P (2000) Performance evaluation of a fuzzy data association algorithm for multitarget tracking (MTT). In: Proceedings of the IEEE 2000 national aerospace and electronics conference, 2000. NAECON Dayton, OH, pp 716–722

  • Ferryman JM, Maybank SJ, Worrall AD (2000) Visual surveillance for moving vehicles. Int J Comput Vis 37(2):187–197

    Article  MATH  Google Scholar 

  • Fleuret F, Berclaz J, Lengagne R, Fua P (2008) Multicamera People tracking with a probabilistic occupancy map. IEEE Trans Pattern Anal Mach Intell 30(2):267–282

    Article  Google Scholar 

  • Gad A, Majdi F, Farooq M (2002) A comparison of data association techniques for target tracking in clutter. In: Proceedings of the fifth international conference on information fusion, vol 2, pp 1126–1133

  • Garcia J, Besada JA, Molina JM, Portillo J, de Miguel G (2002) Fuzzy data association for image-based tracking in dense scenarios. In: IEEE international conference on fuzzy systems, Honolulu, Hawaii, May 2002

  • Garcia J, Molina JM, Besada JA, Portillo JI (2005) A multitarget tracking video system based on fuzzy and neuro-fuzzy techniques. EURASIP J Appl Signal Process (Special Issue on Advances in Intelligent Vision Systems: Methods and Applications, no. 14):2341–2358

  • Genovesio A, Olivo-Marin JC (2004) Split and merge data association filter for dense multi-target tracking. In: 17th int. conf. on pattern recognition, vol 4, pp 677–680

  • Greenhill D, Remagnino P, Jones GA (2002) VIGILANT: content querying of video surveillance streams. In: Remagnino P, Jones GA, Paragios N, Regazzoni CS (eds) Video-based surveillance systems. Kluwer, Boston, pp 193–205

  • Han H, Ran C, Zhu H, Wen R (2003) Multi-target tracking based on multi-sensor information fusion with fuzzy inference In: Proceedings of the sixth international conference of information fusion, vol 2, pp 1421–1425

  • Haritaoglu I, Harwood D, Davis L (1998) W4: who, when, where, what: a real time system for detecting and tracking people. In: Proceedings of the third international conference on automatic face and gesture recognition (FG’98), April 1998, pp 222–227

  • Haritaoglu I, Harwood D, Davis LS (2000) W4: real-time surveillance of people and their activities. IEEE Trans Pattern Anal Mach Intell 22(8):809–830

    Article  Google Scholar 

  • Hillis DB (1997) Using a genetic algorithm for multi-hypothesis tracking. In: 9th int. conf. on tools with artificial intelligence, Newport Beach, CA, USA

  • Isard M, Blake A (1998) Condensation—conditional density propagation for visual tracking. Int J Comput Vis 28(1):5–28

    Article  Google Scholar 

  • Javed O, Shah M (2002) Tracking and object classification for automated surveillance. In: European conference on computer vision, p IV:343 ff

  • Joo S-W, Chellappa R et al (2007) A multiple-hypothesis approach for multiobject visual tracking. IEEE Trans Image Process 16(11):2849–2854

    Article  MathSciNet  Google Scholar 

  • Kan W, Krogmeier J et al (1996) A generalization of the pda target tracking algorithm using hypothesis clustering. Signals Syst Comput 2:878–882

    Google Scholar 

  • Khan Z, Balch T, Dellaert F et al (2005) Multitarget tracking with split and merged measurements. Proc IEEE Conf Vis Pattern Recognit 1:605–610

    Google Scholar 

  • Koller D, Klinker G, Rose E et al. (1997) Real-time vision-based camera tracking for augmented reality applications. In: ACM symposium on virtual reality software and technology, Lausanne, Switzerland

  • Krumm J, Harris S, Meyers B, Brumit B, Hale M, Shafer S (2000) Multi-camera multi-person tracking for easy living. In: Third IEEE int. workshop on visual surveillance, Ireland, pp 8–11

  • Kumar P, Ranganath S, Sengupta K, Weimin H et al (2006) Cooperative multitarget tracking with efficient split and merge handling. IEEE Trans Circuits Syst Video Technol 16(12):1477–1490

    Article  Google Scholar 

  • Leuven J, Leeuwen M, Groen F (2001) Real-time vehicle trakcing in image sequenes. IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, May 2001

  • Liu J, Tong X, Li W, Wang T, Zhang Y, Wang H (2009) Automatic player detection, labeling and tracking in broadcast soccer video. Pattern Recognit Lett 30:103–113. doi:10.1016/j.patrec.2008.02.011

    Article  Google Scholar 

  • Loza A, Patricio MA, Garcia J, Molina JM (2008) Advanced algorithms for real-time video tracking with multiple targets. In: 10th international conference on control, automation, robotics and vision, ICARCV 2008, Hanoi, Vietnam, 17–20 Dec 2008

  • Machine Vision Group, U. o. L. (2001) Cvbase ‘06 workshop on computer vision based analysis in sport environments. http://vision.fe.uni-lj.si/cvbase06/. Accessed in 2007

  • Malik J, Russell S (1996) Final report for traffic surveillance and detection technology development. New traffic sensor technology. University of California

  • Medioni G, Cohen I, Bremond F, Hongeng S, Nevatia R (2001) Event detection and analysis from video streams. IEEE Trans Pattern Anal Mach Intell 23(8):873–889

    Article  Google Scholar 

  • Moeslund TB, Hilton A, Krüger V et al (2006) A survey of advances in vision-based human motion capture and analysis. Comput Vis Image Underst 104(2):90–126

    Article  Google Scholar 

  • Mori G, Belongie S, Malik J (2005) Efficient shape matching using shape contexts. IEEE Trans Pattern Anal Mach Intell 27(11):1832–1837

    Article  Google Scholar 

  • Mühlenbein H (1997) The equation for response to selection and its use for prediction. Evol Comput 5:303–346

    Article  Google Scholar 

  • Novak V, Perfilieva I, Dvovrak A, Chen G, Wei Q, Yan P et al (2008) Mining pure linguistic associations from numerical data. Int J Approx Reason 48(2008):4–22

    Article  MATH  Google Scholar 

  • OpenCV, http://www.intel.com/technology/computing/opencv/index.htm. Accessed in 2006

  • Patricio M, Garcia J, Berlanga A, Molina JM (2008) Solving video-association problem with explicit evaluation of hypothesis using EDAS. In: 2008 IEEE congress on evolutionary computation (IEEE CEC 2008) within 2008 IEEE world congress on computational intelligence (WCCI 2008). Hong Kong, June 2008

  • Pérez P, Vermaak J, Blake A (2004) Data fusion for tracking with particles. Proc IEEE 92(3):495–513

    Article  Google Scholar 

  • PETS (2002) In: 3rd IEEE international workshop on performance evaluation of tracking and surveillance, (PETS’2002). pets2002.visualsurveillance.org. Accessed in 2007

  • Rasmussen C, Hager GD et al (2001) Probabilistic data association methods for tracking complex visual objects. IEEE Trans Pattern Anal Mach Intell 23:560–576

    Article  Google Scholar 

  • Reid DB (1979) An algorithm for tracking multiple targets. IEEE Trans Autom Control 24(6):843–854

    Article  Google Scholar 

  • Ristic B, Arulampalam S, Gordon N (2004) Beyond the Kalman filter: particle filters for tracking applications. Artech House, Boston

    MATH  Google Scholar 

  • Sánchez AM, Patricio MA, García J, Molina JM (2008) Occlusion management using a context-based tracking system. In: 3rd workshop on artificial intelligence techniques for ambient intelligence (AITAmI ’08) special session on vision-based reasoning co-located event of European conference on artificial intelligence, Patras, Greece, 21–22 July 2008

  • Sengupta D, Iltis R et al (1989) Neural solution to the multiple target tracking data association problem. IEEE Trans Aerosp Electron Syst 25:96–108

    Article  Google Scholar 

  • Shams S (1996) Neural network optimization for multi-target multi-sensor passive tracking. Proc IEEE 84(10):1442–1457

    Article  Google Scholar 

  • Sheikh YA, Shah M et al (2008) Trajectory association across multiple airborne cameras. IEEE Trans Pattern Anal Mach Intell 30(2):361–367

    Article  Google Scholar 

  • Singh R-NP, Bailey WH et al (1997) Fuzzy logic applications to multisensor-multitarget correlation. IEEE Trans Aerosp Electron Syst 33:752–769

    Article  Google Scholar 

  • Stauffer C (1999) Adaptive background mixture models for real-time tracking. In: Proc. IEEE conf. on computer vision and pattern recognition, pp. 246–252

  • Stauffer C, Grimson W (1999). Adaptive background mixture models for real-time tracking. In: IEEE computer society conference on computer vision and pattern recognition, vol 2, Los Alamitos, CA. IEEE Computer Society

  • Tao H, Sawhney HS, Kumar R (2002) Object tracking with Bayesian estimation of dynamic layer representations. IEEE Trans Pattern Anal Mach Intell 24(1):75–89

    Article  Google Scholar 

  • Turkmen I, Guney K et al (2004) Cheap joint probabilistic data association with adaptive neuro-fuzzy inference system state filter for tracking multiple targets in cluttered environment. Int J Electron Commun 58:349–357

    Article  Google Scholar 

  • Xu X, Li B (2005) Particle filter for tracking with application in visual surveillance. In: 2nd joint IEEE international workshop on visual surveillance and performance evaluation of tracking and surveillance, Breckenridge, Colorado, USA

  • Xu M, Lowey L, Orwell J (2004) Architecture and algorithms for tracking football players with multiple cameras. In: Proc. IEEE workshop on intelligent distributed surveillance systems, London, pp 51–56

  • Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4), article 13

  • Zhu J, Bogner R, Bouzerdoum A, Southcott M (1994) Application of neural network to track association in over the horizon radar. Proc SPIE 2233:224–235

    Article  Google Scholar 

Download references

Acknowledgments

Research supported by projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB and CAM MADRINET S-0505/TIC/0255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, J., Patricio, M.A., Berlanga, A. et al. Fuzzy region assignment for visual tracking. Soft Comput 15, 1845–1864 (2011). https://doi.org/10.1007/s00500-011-0698-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-011-0698-z

Keywords

Navigation