Skip to main content
Log in

Isolation and polyphasic characterization of a novel hyper catalase producing thermophilic bacterium for the degradation of hydrogen peroxide

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A newly isolated microbial strain of thermophilic genus Geobacillus has been described with emphasis on polyphasic characterization and its application for degradation of hydrogen peroxide. The validation of this thermophilic strain of genus Geobacillus designated as BSS-7 has been demonstrated by polyphasic taxonomy approaches through its morphological, biochemical, fatty acid methyl ester profile and 16S rDNA sequencing. This thermophilic species of Geobacillus exhibited growth at broad pH and temperature ranges coupled with production of extraordinarily high quantities of intracellular catalase, the latter of which as yet not been reported in any member of this genus. The isolated thermophilic bacterial culture BSS-7 exhibited resistance against a variety of organic solvents. The immobilized whole cells of the bacterium successfully demonstrated the degradation of hydrogen peroxide (H2O2) in a packed bed reactor. This strain has potential application in various analytical and diagnostic methods in the form of biosensors and biomarkers in addition to applications in the textile, paper, food and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fruhwirth GO, Paar A, Gudelj M, Cavaco-Paulo A, Robra KH, Gubitz GM (2002) An immobilised catalase peroxidase from the alkalothermophilic Bacillus SF for the treatment of textile-bleaching effluents. Appl Microbiol Biotechnol 60(3):313–319

    Article  CAS  Google Scholar 

  2. Hillenbrand T, Bohm E, Landwehr M, Marscheider-Weidemann F (1999) Die Abwassersituation in der deutschen Papier-Textil- und Lederindustrie. Gwf Wasser Abwasser 140(4):1–12

    Google Scholar 

  3. Rach JJ, Schreier TM, Howe GE, Redman SD (1997) Effect of species, life stage, and water temperature on the toxicity of hydrogen peroxide to fish. Prog Fish Cult 59(1):41–46

    Article  Google Scholar 

  4. Xenopoulos MA, Bird DF (1997) Effect of acute exposure to hydrogen peroxide on the production of phytoplankton and bacterioplankton in a Mesohumic Lake. Photochem Photobiol 66(4):471–478

    Article  CAS  Google Scholar 

  5. Paar A, Costa S, Tzanov T, Gudelj M, Robra KH, Cavaco-Paulo A, Gubitz GM (2001) Thermoalkalistable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents. J Biotechnol 8:147–153

    Article  Google Scholar 

  6. Sooch BS, Kauldhar BS, Puri M (2014) Recent insights into microbial catalases: isolation, production and purification. Biotechnol Adv 32(8):1429–1447

    Article  CAS  Google Scholar 

  7. Spiro MC, Griffith WP (1997) The mechanism of hydrogen peroxide bleaching. Text Chem Color 29(11):12–13

    CAS  Google Scholar 

  8. Costa SA, Tzanov T, Paar A, Gudelj M, Gubitz GM, Cavaco-Paulo A (2001) Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents. Enzym Microb Technol 28:815–819

    Article  CAS  Google Scholar 

  9. Deep K, Poddar A, Das SK (2013) Anoxybacillus suryakundensis sp. nov., a moderately thermophilic, alkalitolerant bacterium isolated from hot spring at Jharkhand, India. Plos One 8(12):e85493/1–11

    Article  Google Scholar 

  10. Zhu H, Guo J, Chen M, Feng G, Yao Q (2012) Burkholderia dabaoshanensis sp. nov., a heavy-metal tolerant bacteria isolated from Dabaoshan mining area soil in China. Plos One 7(12):e50225/1–6

    Google Scholar 

  11. Gudelj M, Fruhwirth GO, Paar A, Lottspeich F, Robra KH, Cavaco-Paulo A (2001) A catalase-peroxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effluents. Extremophiles 5(6):423–429

    Article  CAS  Google Scholar 

  12. Nishikawa M, Hyoudou K, Kobayashi Y, Umeyama Y, Takakura Y, Hashida M (2005) Inhibition of metastatic tumor growth by targeted delivery of antioxidant enzymes. J Control Release 109(1–3):101–107

    Article  CAS  Google Scholar 

  13. Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

    Article  Google Scholar 

  14. Ishida M, Yoshida M, Oshima T (1997) Highly efficient production of enzymes of an extreme thermophile, Thermus thermophilus: a practical method to over express GC-rich genes in Escherichia coli. Extremophiles 1:157–162

    Article  CAS  Google Scholar 

  15. Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    Article  CAS  Google Scholar 

  16. Coombs JM, Brenchley JE (1999) Biochemical and phylogenetic analyses of a cold-active β-galactosidase from the lactic acid bacterium Carnobacterium piscicola. Appl Environ Microbiol 65:5443–5450

    CAS  Google Scholar 

  17. Madigan MT, Marrs BL (1997) Extremophiles. Sci Am 276:66–71

    Article  Google Scholar 

  18. Schiraldi C, De Rosa M (2002) The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol 20(12):515–521

    Article  CAS  Google Scholar 

  19. Somashekar D, Venkateshwaran G, Agrawal R, Prakash MH, Basappa SC (1999) Novel enrichment technique for the isolation of highly potent catalase producing yeasts from soil. Biotechnol Tech 13:65–68

    Article  CAS  Google Scholar 

  20. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47(2):389–394

    Article  CAS  Google Scholar 

  21. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA 6.06: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  22. Kunitsky C, Osterhout G, Sasser M (2005) Identification of microorganisms using fatty acid methyl ester (FAME) analysis and the MIDI Sherlock® Microbial Identification System. In: Miller MJ (ed) Encyclopedia of Rapid Microbiological Methods. Davis Healthcare International Publishing, p 1–17

  23. Prescott LM, Harley JP, Klein DA (2002) Microbial growth. Microbiology, 5th edn. The McGraw-Hill companies, New York, pp 113–135

    Google Scholar 

  24. Neumann G, Veeranagouda Y, Karegoudar T, Sahin O, Mausezahl I, Kabelitz N (2005) Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 9:163–168

    Article  CAS  Google Scholar 

  25. Puri M, Kaur A, Singh RS, Schwarz WH, Kaur A (2010) One step purification and immobilization of His-tagged rhamnosidase for naringin hydrolysis. Process Biochem 45(4):451–456

    Article  CAS  Google Scholar 

  26. Manachini PL, Mora D, Nicastro G, Parini C, Stackebrandt E, Pukall R (2000) Bacillus thermodenitrificans sp. nov., nom. rev. Int J Syst Evol Microbiol 50:1331–1337

    Article  CAS  Google Scholar 

  27. Nazina TN, Lebedeva EV, Poltaraus AB, Tourova TP, Grigoryan AA, Sokolova DS (2004) Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. Int J Syst Evol Microbiol 54:2019–2024

    Article  CAS  Google Scholar 

  28. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  29. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov., and Geobacillus uzenensis sp. nov., from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446

    Article  CAS  Google Scholar 

  30. Deflaun MF, Fredrickson JK, Dong H, Pfiffner SM, Onstott TC (2007) Isolation and characterization of a Geobacillus thermoleovorans strain from an ultra-deep South African gold mine. Syst Appl Microbiol 30(2):152–164

    Article  CAS  Google Scholar 

  31. Coorevits A, Dinsdale AE, Halket G, Lebbe L, Vos PD, Landschoot AV (2012) Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly ‘thermoglucosidasius’); transfer of Bacillus thermantarcticus to the genus as G. thermoantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Microbiol 62:1470–1485

    Article  CAS  Google Scholar 

  32. Logan NA, Vos PD, Dinsdale A (2009) Genus Geobacillus Nazina et al. 2001. In: Vos PD, Garrity G, Jones D, Krieg NR, Ludwig WF, Rainey A, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 144–160

    Google Scholar 

  33. Kobayashi I, Tamura T, Sghaier H, Narumi I, Yamaguchi S, Umeda K (2006) Characterization of monofunctional catalase KatA from radioresistant bacterium Deinococcus radiodurans. J Biosci Bioeng 101(4):315–321

    Article  CAS  Google Scholar 

  34. Timucin E, Sezerman OU (2013) The conserved lid tryptophan, W211, potentiates thermostability and thermoactivity in bacterial thermoalkalophilic lipases. Plos One 8(12):e85186/1–17

    Article  Google Scholar 

  35. Srivastava A, Sinha S (2014) Thermostability of in vitro evolved Bacillus subtilis lipase A: a network and dynamics perspective. Plos one 9(8):e102856/1–14

    Google Scholar 

  36. Sooch BS, Kauldhar BS (2013) Influence of multiple bioprocess parameters on production of lipase from Pseudomonas sp. BWS-5. Braz Arch Biol Technol 56(5):711–721

    Article  CAS  Google Scholar 

  37. Fortina MG, Mora D, Schumann P, Parini C, Manachini PL, Stackebrandt E et al (2001) Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad, 2000) comb. nov. Int J Syst Evol Microbiol 51:2063–2071

    Article  CAS  Google Scholar 

  38. Krulwich TA, Guffanti AA, Seto-Young D (1990) pH homeostasis and bio-energetic work in alkalophiles. FEMS Microbiol Rev 75:271–278

    Article  CAS  Google Scholar 

  39. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  CAS  Google Scholar 

  40. Albers SV, Driessen AJ (2008) Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome. Archaea 2(3):145–149

    Article  CAS  Google Scholar 

  41. Siristova L, Melzoch K, Rezanka T (2009) Fatty acids, unusual glycophospholipids and DNA analyses of thermophilic bacteria isolated from hot springs. Extremophiles 13(1):101–109

    Article  CAS  Google Scholar 

  42. Yang YL, Yang FL, Jao SC, Chen MY, Tsay SS, Zou W, Wu SH (2006) Structural elucidation of phosphoglycolipids from strains of the bacterial thermophiles Thermus and Meiothermus. J Lipid Res 47(8):1823–1832

    Article  CAS  Google Scholar 

  43. Sung MH, Kim H, Bae JW, Rhee SK, Jeon CO, Kim K (2002) Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int J Syst Evol Microbiol 52:2251–2255

    CAS  Google Scholar 

  44. Ahmad S, Scopes RK, Rees GN, Patel BKC (2000) Saccharococcus caldoxylosilyticus sp. nov., an obligately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 50:517–523

    Article  CAS  Google Scholar 

  45. Oluoch KR, Welander U, Andersson MM, Mulaa FJ, Mattiasson B, Hatti-Kaul R (2006) Hydrogen peroxide degradation by immobilized cells of alkaliphilic Bacillus halodurans. Biocatal Biotransform 24(3):215–222

    Article  CAS  Google Scholar 

  46. Sooch BS, Kauldhar BS (2015) Development of an eco-friendly whole cell based continuous system for the degradation of hydrogen peroxide. J Bioprocess Biotech 5(6):1–5

    Article  Google Scholar 

  47. Claus D, Berkeley RCW (1986) Genus Bacillus Cohn 1872. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 1105–1139

    Google Scholar 

  48. Priest FG, Goodfellow M, Todd C (1988) A numerical classification of the genus Bacillus. J Gen Microbiol 134:1847–1882

    CAS  Google Scholar 

  49. Suzuki Y, Kishigami T, Inoue K, Mizoguchi Y, Eto N, Takagi M (1983) Bacillus thermoglucosidasius sp. nov., a new species of obligately thermophilic bacilli. Syst Appl Microbiol 4:487–495

    Article  CAS  Google Scholar 

  50. White D, Sharp RJ, Priest FG (1993) A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area. Antonie Van Leeuwenhoek 64:357–386

    Article  Google Scholar 

  51. Caccamo D, Gugliandolo C, Stackebrandt E, Maugeri TL (2000) Bacillus vulcani sp. nov., a novel thermophilic species isolated from a shallow marine hydrothermal vent. Int J Syst Evol Microbiol 50:2009–2012

    Article  Google Scholar 

  52. Nazina TN, Sokolovaa DS, Grigoryana AA, Shestakovaa NM, Mikhailovaa EM, Poltarausb AB (2005) Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validation of the Geobacillus species. Syst Appl Microbiol 28:43–53

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Department of Biotechnology, Punjabi University, Patiala, for providing necessary laboratory facilities. The authors also thank University Grants Commission, New Delhi, India, for providing Rajiv Gandhi National Fellowship for doctoral studies to Mr. Baljinder Singh Kauldhar to execute his research work. Facilities availed for the validation of present studies from National Institute for Pharmaceutical and Drug Research, Mohali, India, for SEM & TEM micrographs are highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balwinder Singh Sooch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the present publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sooch, B.S., Kauldhar, B.S. & Puri, M. Isolation and polyphasic characterization of a novel hyper catalase producing thermophilic bacterium for the degradation of hydrogen peroxide. Bioprocess Biosyst Eng 39, 1759–1773 (2016). https://doi.org/10.1007/s00449-016-1651-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1651-4

Keywords

Navigation