Skip to main content

Advertisement

Log in

Studying monogenetic volcanoes with a terrestrial laser scanner: case study at Croscat volcano (Garrotxa Volcanic Field, Spain)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Erosional processes (natural or anthropogenic) may partly destroy the relatively small-sized volcanic edifices characteristic of monogenetic volcanic zones, leaving their internal structure well exposed. Nevertheless, the study of these outcrops may be extremely challenging due to restricted accessibility or safety issues. Digital representations of the outcrop surface have been lately used to overcome such difficulties. Data acquired with terrestrial laser scanning instruments using Light Detection and Ranging technology enables the construction of such digital outcrops. The obtained high-precision 3-D terrain models are of greater coverage and accuracy than conventional methods and, when taken at different times, allow description of geological processes in time and space. Despite its intrinsic advantages and the proven satisfactory results, this technique has been little applied in volcanology-related studies. Here, we want to introduce it to the volcanological community together with a new and user-friendly digital outcrop analysis methodology for inexperienced users. This tool may be useful, not only for volcano monitoring purposes, but also to describe the internal structure of exposed volcanic edifices or to estimate outcrop erosion rates that may be helpful in terms of hazard assessment or preservation of volcanic landscapes. We apply it to the Croscat volcano, a monogenetic cone in the La Garrotxa Volcanic Field (Catalan Volcanic Zone, NE Spain), quarrying of which leads to a perfect view of its interior but restricts access to its uppermost parts. Croscat is additionally one of the most emblematic symbols of the La Garrotxa Volcanic Field Natural Park, and its preservation is a main target of the park administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abellan A, Calvet J, Vilaplana JM, Blanchard J (2010) Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 119:162–171

    Article  Google Scholar 

  • Adams EW, Grotzinger JP, Waters WA, Schroder S, McCormick D, Al-Siyabi H (2005) Digital characterization of thrombolite–stromatolite reef distribution in a carbonate ramp system (terminal Proterozoic, Nama Group, Namibia). Am Assoc Pet Geol Bull 89:1293–1318

    Google Scholar 

  • Baldi P, Bonvalot S, Briole P, Marsella M (2000) Digital photogrammetry and kinematic GPS applied to the monitoring of Vulcano Island, Aeolian Arc, Italy. Geophys J Int 142(3):801–811

    Article  Google Scholar 

  • Barabási A-L, Albert R, Schiffer P (1999) The physics of sand castles: maximum angle of stability in wet and dry granular media. Phys A: Stat Mech Appl 266(1–4):366–371

    Article  Google Scholar 

  • Bellian JA, Kerans C, Jennette DC (2005) Digital outcrop models: applications of terrestrial scanning LIDAR technology in stratigraphic modelling. J Sediment Res 72:166–176

    Article  Google Scholar 

  • Bemis K, Walker J, Borgia A, Turrin B, Neri M, Swisher Iii C (2011) The growth and erosion of cinder cones in Guatemala and El Salvador: models and statistics. J Volcanol Geotherm Res 201(1–4):39–52

    Article  Google Scholar 

  • Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Article  Google Scholar 

  • Bolós X, Planagumà L, Martí J (2014) Volcanic stratigraphy of the Quaternary La Garrotxa Volcanic Field (north-east Iberian Peninsula). J Quat Sci 29(6):547–560

    Article  Google Scholar 

  • Buckley SJ, Howell JA, Enge HD, Kurz TH (2008) Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. J Geol Soc 165(3):625–638

    Article  Google Scholar 

  • Cimarelli C, Di Traglia F, Taddeucci J (2010) Basaltic scoria textures from a zoned conduit as precursors to violent Strombolian activity. Geology 38(5):439–442

    Article  Google Scholar 

  • Conforti C, DEline P, Mortara G, Tamburini A (2005) Terrestrial scanning LiDAR technology applied to study the evolution of the ice-contact image lake (Mont Blanc, Italy). In: Proceedings of the 9th Alpine Glaciological Meeting. Milan

  • Conforti D, Pesci A, Fabris M, Loddo F, Anzidei M, Baldi P, Pingue F, Pinto L (2006) Terrestrial lidar (laser) scanner technology applied to survey the Vesuvio volcano (Italy) for geological and geo-morphological analysis. In: European Geosciences Union. Geophysical Research Abstracts, Vienna, p 08236

  • Crow R, Karlstrom KE, McIntosh W, Peters L, Dunbar N (2008) History of Quaternary volcanism and lava dams in western Grand Canyon based on lidar analysis, 40Ar/39Ar dating, and field studies: implications for flow stratigraphy, timing of volcanic events, and lava dams. Geosphere 4(1):183–206

    Article  Google Scholar 

  • Di Traglia F, Cimarelli C, de Rita D, Gimeno Torrente D (2009) Changing eruptive styles in basaltic explosive volcanism: examples from Croscat complex scoria cone, Garrotxa Volcanic Field (NE Iberian Peninsula). J Volcanol Geotherm Res 180(2–4):89–109

    Article  Google Scholar 

  • Dueholm KS, Olsen T (1993) Reservoir analog studies using multimodel photogrammetry: a new tool for the petroleum industry. Am Assoc Pet Geol Bull 77:2023–2031

    Google Scholar 

  • Enge HD, Buckley SJ, Rotevatn A, Howell J (2007) From outcrop to reservoir simulation model: workflow and procedures. Geosphere 3:469–490

    Article  Google Scholar 

  • Fabuel-Perez I, Hodgetts D, Redfern J (2009) A new approach for outcrop characterization and geostatistical analysis of a low-sinuosity fluvial-dominated succession using digital outcrop models: upper Triassic Oukaimeden Sandstone Formation, central High Atlas, Morocco. Am Assoc Pet Geol Bull 93:795–827

    Google Scholar 

  • Favalli M, Dv K, Mazzarini F, Pareschi MT, Boschi E (2009) Morphometry of scoria cones located on a volcano flank: a case study from Mt. Etna (Italy), based on high-resolution LiDAR data. J Volcanol Geotherm Res 186(3–4):320–330

    Article  Google Scholar 

  • Favalli M, Fornaciai A, Mazzarini F, Harris A, Neri M, Behncke B, Pareschi MT, Tarquini S, Boschi E (2010) Evolution of an active lava flow field using a multitemporal LIDAR acquisition. J Geophys Res: Solid Earth 115(B11), B11203

    Article  Google Scholar 

  • Fisher RV, Waters AC (1970) Base surge bed forms in Maar volcanoes. Am J Sci 268:157–180

    Article  Google Scholar 

  • García-Sellés D, Falivene O, Arbués P, Gratacos O, Tavani S, Muñoz JA (2011) Supervised identification and reconstruction of near-planar geological surfaces from terrestrial laser scanning. Comput Geosci 37(10):1584–1594

    Article  Google Scholar 

  • Gruen A, Akca D (2005) Least squares 3D surface and curve matching. ISPRS J Photogramm Remote Sens 59(3):151–174

    Article  Google Scholar 

  • Guérin G, Behamoun G, Mallarach JM (1985) Un exemple de fusióparcial en medi continental. El vulcanisme quaternari de la Garrotxa. Publicació del Museu Comarcal de la Garrotxa, Vitrina: 19-26

  • Heiken GH (1971) Tuff Rings: examples from the Fort Rock-Christmas Lake Valley Basin, South-Central Oregon. J Geophys Res 76(23):5615–5626

    Article  Google Scholar 

  • Hodgetts D, Drinkwater NJ, Hodgson D, Kavanagh J, Flint S, Keogh KJ, Howell J (2004) Three dimensional geological models from outcrop data using digital collection techniques: an example from theTanqua Karoo depocentre, South Africa. In: Curtis A, Wood R (eds) Geological Prior Information: Information Science and Engineering. Geological Society of London Special Publications, London, p 57–75

  • Hunter G, Pinkerton H, Airey R, Calvari S (2003) The application of a long-range laser scanner for monitoring volcanic activity on Mount Etna. J Volcanol Geotherm Res 123(1–2):203–210

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellan A, Derron M-H, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28

    Article  Google Scholar 

  • James MR, Pinkerton H, Applegarth LJ (2009) Detecting the development of active lava flow fields with a very-long-range terrestrial laser scanner and thermal imagery. Geophys Res Lett 36(22), L22305

    Article  Google Scholar 

  • Jones LD (2006) Monitoring landslides in hazardous terrain using terrestrial LiDAR: an example from Montserrat. Q J Eng Geol Hydrogeol 39(4):371–373

    Article  Google Scholar 

  • Jones LD (2007) The application of terrestrial lidar to volcano monitoring—an example from the Montserrat Volcano Observatory. Civ Eng Surveyor: 21-23

  • Jones RR, McCaffrey KJW, Clegg P, Wilson RW, Holliman NS, Holdsworth RE, Imber J, Waggot S (2009) Integration of regional to outcrop digital data: 3D visualization of multi-scale geological models. Comput Geosci 35:4–18

    Article  Google Scholar 

  • Kaab A, Funk A (1999) Modelling mass balance using photogrammetric and geophysical data: a pilot study at Griesgletscher, Swiss Alps. J Glaciol 45:575–583

    Google Scholar 

  • Kokelaar P (1986) Magma-water interactions in subaqueous and emergent basaltic volcanism. Bull Volcanol 48:275–289

    Article  Google Scholar 

  • Lorenz V (1973) On the formation of maars. Bull Volcanol 37:183–204

    Article  Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:256–274

    Article  Google Scholar 

  • Lorenz V (1987) Phreatomagmatism and its relevance. Chem Geol 62:149–156

    Article  Google Scholar 

  • Marsella M, Scifoni S, Coltelli M, Proietti C (2011) Quantitative analysis of the 1981 and 2001 Etna flank eruptions: a contribution for future hazard evaluation and mitigation. Ann Geophys 54(5)

  • Martí J, Mitjavila J, Roca E, Aparicio A (1992) Cenozoic magmatism of the Valencia trough (western Mediterranean): relationship between structural evolution and volcanism. Tectonophysics 203:145–165

    Article  Google Scholar 

  • Martí J, Planagumà L, Geyer A, Canal E, Pedrazzi D (2011) Complex interaction between Strombolian and phreatomagmatic eruptions in the Quaternary monogenetic volcanism of the Catalan Volcanic Zone (NE of Spain). J Volcanol Geotherm Res 201(1–4):178–193

    Article  Google Scholar 

  • Massey C, Manville V, Hancox G, Keys H, Lawrence C, McSaveney M (2010) Out-burst flood (lahar) triggered by retrogressive landsliding, 18 March 2007 at Mt Ruapehu, New Zealand—a successful early warning. Landslides 7(3):303–315

    Article  Google Scholar 

  • McCaffrey KJW, Jones RR, Holdsworth RE, Wilson RW, Clegg P, Imber J, Holliman N, Trinks I (2005) Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork. J Geol Soc 162:927–938

    Article  Google Scholar 

  • McGetchin TR, Settle M, Chouet BA (1974) Cinder cone growth modeled after Northeast Crater, Mount Etna, Sicily. J Geophys Res 79(23):3257–3272

    Article  Google Scholar 

  • Mora P, Baldi P, Casula G, Fabris M, Ghirotti M, Mazzini E, Pesci A (2003) Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: application to the Ca' di Malta landslide (northern Apennines, Italy). Eng Geol 68(1–2):103–121

    Article  Google Scholar 

  • Nelson CE, Jerram DA, Hobbs RW, Terrington R, Kessler H (2011) Reconstructing flood basalt lava flows in three dimensions using terrestrial laser scanning. Geosphere 7(1):87–96

    Article  Google Scholar 

  • Németh K, Haller MJ, Siebe C (2011) Maars and scoria cones: the enigma of monogenetic volcanic fields. Journal of Volcanology and Geothermal Research 201(1-4):v-viii

  • Németh, K., Agustin-Flores, J., Briggs, R., Cronin, S.J., Kereszturi, G., Lindsay, J.M., Pittari, A. and Smith, I.E.M. (2012a). Monogenetic volcanism of the South Auckland and Auckland Volcanic Fields IAVCEI-CMV/CVS-IAS Fourth International Maar Conference: a multidisciplinary congress on monogenetic volcanism [20–24 February 2012]. Geoscience Society of New Zealand Miscellaneous Publication, Auckland

  • Németh K, Risso C, Nullo F, Smith IEM, Pécskay Z (2012b) Facies architecture of an isolated long-lived, nested polygenetic silicic tuff ring erupted in a braided river system: The Los Loros volcano, Mendoza, Argentina. J Volcanol Geotherm Res 239–240:33–48

    Article  Google Scholar 

  • Nissen E, Krishnan AK, Arrowsmith JR, Saripalli S (2012) Three-dimensional surface displacements and rotations from differencing pre- and post-earthquake LiDAR point clouds. Geophys Res Lett 39(16), L16301

    Article  Google Scholar 

  • Pedrazzi D, Martí J, Geyer A (2013) Stratigraphy, sedimentology and eruptive mechanisms in the tuff cone of El Golfo (Lanzarote, Canary Islands). Bull Volcanol 75:1–17. doi:10.1007/s00445-013-0740-3

    Article  Google Scholar 

  • Pedrazzi D, Bolós X, Martí J (2014) Phreatomagmatic volcanism in complex hydrogeological environments: La Crosa de Sant Dalmai maar (Catalan Volcanic Zone, NE Spain). Geosphere 10(1):170–184

    Article  Google Scholar 

  • Pesci A, Baldi P, Bedin A, Casula G, Cenni N, Fabris M, Loddo F, Mora P, Bacchetti M (2004) Digital elevation models for landslide evolution monitoring: application on two areas located in the Reno River Valley (Italy). Ann Geophys 47:1339–1353

    Google Scholar 

  • Pesci A, Loddo F, Conforti C (2007) The first terrestrial laser scanner application over Vesuvius: high resolution model of a volcano crater. Int J Remote Sens 28(1):203–219

    Article  Google Scholar 

  • Petrie G, Toth CK (2008a) I. Introduction to laser ranging, profiling and scanning. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning: principles and processing. CRC Press, Taylor & Francis

  • Petrie G, Toth CK (2008b) III. Terrestrial laser scanners. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning: principles and processing. CRC Press, Taylor & Francis

  • Pringle JK, Westerman AR, Clark JD, Drinkwater NJ, Gardiner AR (2004) 3D high-resolution digital models of outcrop analogue study sites to constrain reservoir model uncertainty: an example from Alport Castles, Derbyshire, UK. Pet Geosci 10:343–352

    Article  Google Scholar 

  • Procter J, Cronin SJ, Fuller IC, Lube G, Manville V (2010) Quantifying the geomorphic impacts of a lake-breakout lahar, Mount Ruapehu, New Zealand. Geology 38(1):67–70

    Article  Google Scholar 

  • Riedel C, Ernst GGJ, Riley M (2003) Controls on the growth and geometry of pyroclastic constructs. J Volcanol Geotherm Res 127(1–2):121–152

    Article  Google Scholar 

  • Robinson DA, Friedman SP (2002) Observations of the effects of particle shape and particle size distribution on avalanching of granular media. Phys A: Stat Mech Appl 311(1–2):97–110

    Article  Google Scholar 

  • Settle M (1979) Formation and deposition of volcanic sulfate aerosols on Mars. J Geophys Res: Solid Earth 84(B14):8343–8354

    Article  Google Scholar 

  • Sohn YK (1996) Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea. Geol Soc Am Bull 108(10):1199–1211

    Article  Google Scholar 

  • Sohn YK, Chough SK (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36(5):837–855

    Article  Google Scholar 

  • Teza G, Galgaro A, Zaltron N, Genevois R (2007) Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Remote Sens 28:3425–3446

    Article  Google Scholar 

  • Trinks I, Clegg P, McCaffrey KJW, Jones RR, Hobbs R, Holdsworth RE, Holliman N, Imber J, Waggot S, Wilson RW (2006) Mapping and analysing virtual outcrops. Vis Geosci 10:13–19

    Article  Google Scholar 

  • van Westen CJ, Lulie Getahun F (2003) Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models. Geomorphology 54(1–2):77–89

    Article  Google Scholar 

  • Ventura G, Vilardo G (2008) Emplacement mechanism of gravity flows inferred from high resolution Lidar data: the 1944 Somma-Vesuvius lava flow (Italy). Geomorphology 95(3–4):223–235

    Article  Google Scholar 

  • Walker GPL (2000) Basaltic volcanoes and volcanic systems. In: Sigurdsson H (ed) Encyclopedia of Volcanoes. Academic Press San Francisco (CA), pp 283-289

  • Waters AC, Fisher RV (1971) Base-surges and their deposits: Capelinhos and Taal volcanoes. J Geophys Res 76:5596–5614

    Article  Google Scholar 

  • White JDL (1996) Impure coolants and interaction dynamics of phreatomagmatic eruptions. J Volcanol Geotherm Res 74(3–4):155–170

    Article  Google Scholar 

  • White JDL, Houghton B (2000) Surtseyan and related phreatomagmatic eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 495–511

    Google Scholar 

  • White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201(1–4):1–29

    Article  Google Scholar 

  • Wohletz KH (1986) Explosive magma-water interactions: thermodynamics, explosion mechanisms, and field studies. Bull Volcanol 48:245–264

    Article  Google Scholar 

  • Wong KW (1980) Basic mathematics of photogrammetry. In: Slama CC (ed) Manual of photogrammetry. American Society of Photogrammetry, Falls Church, pp 37–101

    Google Scholar 

  • Xu X, Aiken CL, Bhattacharya JP, Corbeanu R, Nielsen KC, McMechan GA, Abdelsalam MG (2000) Creating virtual 3-D outcrop. Lead Edge: 197–202

Download references

Acknowledgments

We thank the Natural Park of the La Garrotxa Volcanic Field and its staff for permission to undertake this research and for all their support that we have always received from them. AG is grateful for her Juan de la Cierva post-doctoral grant (JCI-2010-06092) and her Ramón y Cajal contract (RYC-2012-11024). SBC acknowledges the JAE-Doc postdoctoral personal grant program of CSIC (JAEDoc_09_01319). This work was partly financed by projects CGL2010-21968-C02-01, CGL2010-18609 and CGL2013-40828-R of the Spanish Ministry of Science and Innovation. The editor Vern Manville and the reviewers Gabor Kereszturi and Laurent Michon are thanked for their thorough and constructive reviews, which resulted in substantial improvements to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Geyer.

Additional information

Editorial responsibility: V. Manville

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geyer, A., García-Sellés, D., Pedrazzi, D. et al. Studying monogenetic volcanoes with a terrestrial laser scanner: case study at Croscat volcano (Garrotxa Volcanic Field, Spain). Bull Volcanol 77, 22 (2015). https://doi.org/10.1007/s00445-015-0909-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0909-z

Keywords

Navigation