Skip to main content
Log in

Using a model based fourth-corner analysis to explain vegetation change following an extraordinary fire disturbance

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

In ecosystems where large-scale disturbances are infrequent, the mode of succession may be difficult to discern and floristic surveys alone cannot be used determine the underlying processes causing vegetation change. To determine the causes of vegetation change in response to a large-scale fire event, we combined traditional floristic survey data, plant functional traits and environmental variables in a model-based solution to the fourth-corner problem. This approach allowed us to describe the trait-environment relationship and provides an intuitive matrix of environment by trait interaction coefficients. We could then quantify the strength and direction of associations between plant traits, species life-forms and environmental factors in two alpine plant communities over nine years post-fire. Initially, the fire drastically reduced vegetation cover and species density to very low levels. The fourth-corner analysis interaction coefficients indicated that over the course of the nine-year study a high abundance of graminoids, a low abundance of shrubs, tall species and those with high leaf dry matter content had the strongest associations with the two plant communities. We also found evidence for functional homogenisation between these two communities using this novel technique. Analysing plant traits and species responses post-fire in this manner can be used to infer the ecological processes driving shifts in vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Attiwill PM (1994) Ecological disturbance and the conservative management of eucalypt forests in Australia. For Ecol Manage 63:301–346. doi:10.1016/0378-1127(94)90115-5

    Article  Google Scholar 

  • Ballantyne M, Pickering CM (2015) Shrub facilitation is an important driver of alpine plant community diversity and functional composition. Biodivers Conserv 24(8):1859–1875. doi:10.1007/s10531-015-0910-z

    Article  Google Scholar 

  • Beckage B, Platt WJ, Gross LJ (2009) Vegetation, fire, and feedbacks: a disturbance-mediated model of savannas. Am Nat 174:805–818. doi:10.1086/648458

    Article  PubMed  Google Scholar 

  • Brown AM, Warton DI, Andrew NR, Binns M, Cassis G, Gibb H (2014) The fourth-corner solution–using predictive models to understand how species traits interact with the environment. Methods Ecol Evol 5:344–352. doi:10.1111/2041-210X.12163

    Article  Google Scholar 

  • Callaway RM et al (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848. doi:10.1038/nature00812

    Article  CAS  PubMed  Google Scholar 

  • Camac JS, Williams RJ, Wahren CH, Morris WK, Morgan JW (2013) Post-fire regeneration in alpine heathland: does fire severity matter? Austral Ecol 38:199–207. doi:10.1111/j.1442-9993.2012.02392.x

    Article  Google Scholar 

  • Cornelissen JHC et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. doi:10.1071/BT02124

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126. doi:10.1890/07-1134.1

    Article  Google Scholar 

  • Costin AB, Gray M, Totterdell CJ, Wimbush DJ (2000) Kosciuszko alpine flora. CSIRO, Melbourne

    Google Scholar 

  • Dale VH et al (2001) Climate change and forest disturbances: climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. Bioscience 51:723–734. doi:10.1641/0006-568(2001)051[0723:CCAFD]2.0.CO

  • Diaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463–474. http://www.jstor.org/stable/3237198

    Article  Google Scholar 

  • Dolédec S, Chessel D, Ter Braak C, Champely S (1996) Matching species traits to environmental variables: a new three-table ordination method. Environ Ecol Stat 3:143–166. doi:10.1007/BF02427859

    Article  Google Scholar 

  • Dray S, Legendre P (2008) Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89:3400–3412. doi:10.1890/08-0349.1

    Article  PubMed  Google Scholar 

  • Easterling DR, Evans J, Groisman PY, Karl T, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425

    Article  Google Scholar 

  • Fraterrigo JM, Rusak JA (2008) Disturbance-driven changes in the variability of ecological patterns and processes. Ecol Lett 11:756–770. doi:10.1111/j.1461-0248.2008.01191.x

    Article  PubMed  Google Scholar 

  • Ghermandi L, Guthmann N, Bran D (2004) Early post-fire succession in northwestern Patagonia grasslands. J Veg Sci 15:67–76. doi:10.1111/j.1654-1103.2004.tb02238.x

    Article  Google Scholar 

  • Gibb H et al (2015a) Responses of foliage-living spider assemblage composition and traits to a climatic gradient in Themeda grasslands. Austral Ecol 40:225–237. doi:10.1111/aec.12195

    Article  Google Scholar 

  • Gibb H, Stoklosa J, Warton D, Brown A, Andrew N, Cunningham S (2015b) Does morphology predict trophic position and habitat use of ant species and assemblages? Oecologia 177:519–531. doi:10.1007/s00442-014-3101-9

    Article  CAS  PubMed  Google Scholar 

  • Good RB (1992) Kosciusko heritage. The National Parks and Wildlife Service of New South Wales, Sydney

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Hennessy K, et al (2005) Climate change impacts on fire-weather in south-east Australia. Climate impacts group, CSIRO atmospheric research and the australian government bureau of meteorology, Aspendale

  • Hennessy K et al (2007) Climate change effects on snow conditions in mainland Australia and adaptation at ski resorts through snowmaking. Clim Res 35:255. doi:10.3354/cr00706

    Article  Google Scholar 

  • Hooper DM, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277:1302–1305. doi:10.1126/science.277.5330.1302

    Article  CAS  Google Scholar 

  • Hui FK (2016) Boral–Bayesian ordination and regression analysis of multivariate abundance data in R. Methods Ecol Evol. doi:10.1111/2041-210X.12514

    Google Scholar 

  • Kahmen S, Poschlod P (2004) Plant functional trait responses to grassland succession over 25 years. J Veg Sci 15:21–32. doi:10.1111/j.1654-1103.2004.tb02233.x

    Article  Google Scholar 

  • Keith DA, Holman L, Rodoreda S, Lemmon J, Bedward M (2007) Plant functional types can predict decade scale changes in fire-prone vegetation. J Ecol 95:1324–1337. doi:10.1111/j.1365-2745.2007.01302.x

    Article  Google Scholar 

  • Kirkpatrick J, Bridle K, Wild A (2002) Succession after fire in alpine vegetation on Mount Wellington, Tasmania. Aust J Bot 50:145–154. doi:10.1071/BT00081

    Article  Google Scholar 

  • Kruger FJ, Bigalke RC (1984) Fire in fynbos. In: de Booysen PV, Tainton NM (eds) Ecological effects of fire in South African ecosystems. vol 48. Springer, pp 67–114

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits. Funct Ecol 16:545–546. doi:10.1046/j.1365-2435.2002.00664.x

    Article  Google Scholar 

  • Lavorel S et al (2008) Assessing functional diversity in the field–methodology matters! Funct Ecol 22:134–147. doi:10.1111/j.1365-2435.2007.01339.x

    Google Scholar 

  • Legendre P, Galzin R, Harmelin-Vivien ML (1997) Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78:547–562. doi:10.1890/0012-9658(1997)078[0547:RBTHST]2.0.CO;2

  • McDougall K, Walsh N, Wright G (2015) Recovery of treeless subalpine vegetation in Kosciuszko National Park after the landscape-scale fire of 2003. Aust J Bot 63:597–607. doi:10.1071/BT14319

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • McLuckie J, Petrie AH (1927) The vegetation of the Kosciusko Plateau I. The plant communities. In: Proc. Linn. Soc. NSW, vol. 52, pp 187–221

  • Michalet R, Schöb C, Lortie CJ, Brooker RW, Callaway RM (2014) Partitioning net interactions among plants along altitudinal gradients to study community responses to climate change. Funct Ecol 28:75–86. doi:10.1111/1365-2435.12136

    Article  Google Scholar 

  • Morgan JW (1999) Defining grassland fire events and the response of perennial plants to annual fire in temperate grasslands of south-eastern Australia. Plant Ecol 144:127–144. doi:10.1023/A:1009731815511

    Article  Google Scholar 

  • Pausas JG, Bradstock RA, Keith DA, Keeley JE (2004) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85:1085–1100. doi:10.1890/02-4094

    Article  Google Scholar 

  • Pickering CM, Butler S (2009) Patterns in vascular plant species density in tall alpine herbfield along an increasing altitudinal gradient in an Australian alpine region. Aust J Bot 57:210–220. doi:10.1071/BT08202

    Article  Google Scholar 

  • Pitman A, Narisma G, McAneney J (2007) The impact of climate change on the risk of forest and grassland fires in Australia. Clim Change 84:383–401. doi:10.1007/s10584-007-9243-6

    Article  Google Scholar 

  • Purdie RW, Slatyer R (1976) Vegetation succession after fire in sclerophyll woodland communities in south-eastern Australia. Aust J Ecol 1:223–236. doi:10.1111/j.1442-9993.1976.tb01111.x

    Article  Google Scholar 

  • Smith MD, Knapp AK (1999) Exotic plant species in a C4-dominated grassland: invasibility, disturbance, and community structure. Oecologia 120:605–612. doi:10.1007/s004420050896

    Article  Google Scholar 

  • Spasojevic MJ, Suding KN (2012) Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J Ecol 100:652–661. doi:10.1111/j.1365-2745.2011.01945.x

    Article  Google Scholar 

  • Ter Braak CJ, Cormont A, Dray S (2012) Improved testing of species traits-environment relationships in the fourth-corner problem. Ecology 93:1525–1526. doi:10.1890/12-0126.1

    Article  PubMed  Google Scholar 

  • Thonicke K, Venevsky S, Sitch S, Cramer W (2001) The role of fire disturbance for global vegetation dynamics: coupling fire into a dynamic global vegetation model. Glob Ecol Biogeogr 10:661–677. doi:10.1046/j.1466-822X.2001.00175.x

    Article  Google Scholar 

  • Turner MG, Baker WL, Peterson CJ, Peet RK (1998) Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems 1:511–523. doi:10.1007/s100219900047

    Article  Google Scholar 

  • Van Langevelde F et al (2003) Effects of fire and herbivory on the stability of savanna ecosystems. Ecology 84:337–350. doi:10.1890/0012-9658(2003)084[0337:EOFAHO]2.0.CO;2

  • Van Wilgen B, Forsyth G (1992) Regeneration strategies in fynbos plants and their influence on the stability of community boundaries after fire. In: Fire in South African mountain fynbos. Springer, pp 54–80

  • Venn SE, Morgan JW, Green PT (2009) Do facilitative interactions with neighboring plants assist the growth of seedlings at high altitudes in alpine Australia? Arct Antarct Alp Res 41:381–387. doi:10.1657/1938-4246-41.3.381

    Article  Google Scholar 

  • Venn SE, Green K, Pickering CM, Morgan JW (2011) Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snowpatches. Plant Ecol 212:1491–1499. doi:10.1007/s11258-011-9923-1

    Article  Google Scholar 

  • Villeger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301. doi:10.1890/07-1206.1

    Article  PubMed  Google Scholar 

  • Wahren C, Walsh N (2000) Impact of fire in treeless subalpine vegetation at Mt Buffalo National Park, 1982–1999. Unpublished report to the Australian Alps Liaison Committee by La Trobe University, Melbourne

  • Wahren CH, Papst WA, Williams RJ (2001) Early post-fire regeneration in subalpine heathland and grassland in the Victorian Alpine National Park, south-eastern Australia. Austral Ecol 26:670–679. doi:10.1046/j.1442-9993.2001.01151.x

    Article  Google Scholar 

  • Warton DI et al (2015a) So many variables: joint modeling in community ecology. Trends Ecol Evol 30:766–779

    Article  PubMed  Google Scholar 

  • Warton DI, Foster SD, De’ath G, Stoklosa J, Dunstan PK (2015b) Model-based thinking for community ecology. Plant Ecol 216:669–682. doi:10.1007/s11258-014-0366-3

    Article  Google Scholar 

  • Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos. doi:10.2307/3545686

    Google Scholar 

  • Weiher E, Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620. doi:10.2307/3237076

    Article  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227. doi:10.1023/A:1004327224729

    Article  CAS  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268

    Article  PubMed  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159. doi:10.1146/annurev.ecolsys.33.010802.150452

    Article  Google Scholar 

  • Williams RJ et al (2008) Large fires in Australian alpine landscapes: their part in the historical fire regime and their impacts on alpine biodiversity. Int J Wildland Fire 17:793–808. doi:10.1071/WF07154

    Article  Google Scholar 

  • Wimbush D, Forrester R (1988) Effects of rabbit grazing and fire on a subalpine environment II. Tree vegetation. Aust J Bot 36:287–298. doi:10.1071/BT9880287

    Article  Google Scholar 

  • Yates ML, Andrew NR, Binns M, Gibb H (2014) Morphological traits: predictable responses to macrohabitats across a 300 km scale. Peer J 2:e271. https://doi.org/10.7717/peerj.271

    Article  PubMed  PubMed Central  Google Scholar 

  • Zedler PH, Gautier CR, McMaster GS (1983) Vegetation change in response to extreme events: the effect of a short interval between fires in California chaparral and coastal scrub. Ecology 64:809–818. doi:10.2307/1937204

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Cooperative Research Centre for Sustainable Tourism, the National Climate Change Adaptation Research Facility and New South Wales National Parks and Wildlife Service for funding and logistical support. We thank Wendy Hill, Andrew Bryant, Andrew Growcock, Daniel Guitart, Daryl Robinson, Jeremy Carrington, Rachel Hill, Sebastian Rossi, Tanya Fountain and Zarni Bear for assistance with the fieldwork. We thank John Morgan for useful comments on an early draft of the manuscript and David Warton for guidance in fitting the fourth-corner models.

Author contribution statement

CMP conceived and designed the study and conducted a large proportion of the fieldwork, SAB conducted fieldwork and did the initial analyses, SEV wrote the manuscript and developed the analytical ideas in conjunction with ADL, who also conducted and generated the final analyses. SEV, CMP and ADL edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Venn.

Additional information

Communicated by Katherine L Gross.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venn, S.E., Pickering, C.M., Butler, S.A. et al. Using a model based fourth-corner analysis to explain vegetation change following an extraordinary fire disturbance. Oecologia 182, 855–863 (2016). https://doi.org/10.1007/s00442-016-3700-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3700-8

Keywords

Navigation