Skip to main content

Advertisement

Log in

Integrating acoustic telemetry into mark–recapture models to improve the precision of apparent survival and abundance estimates

  • Population ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Capture–mark–recapture models are useful tools for estimating demographic parameters but often result in low precision when recapture rates are low. Low recapture rates are typical in many study systems including fishing-based studies. Incorporating auxiliary data into the models can improve precision and in some cases enable parameter estimation. Here, we present a novel application of acoustic telemetry for the estimation of apparent survival and abundance within capture–mark–recapture analysis using open population models. Our case study is based on simultaneously collecting longline fishing and acoustic telemetry data for a large mobile apex predator, the broadnose sevengill shark (Notorhynchus cepedianus), at a coastal site in Tasmania, Australia. Cormack–Jolly–Seber models showed that longline data alone had very low recapture rates while acoustic telemetry data for the same time period resulted in at least tenfold higher recapture rates. The apparent survival estimates were similar for the two datasets but the acoustic telemetry data showed much greater precision and enabled apparent survival parameter estimation for one dataset, which was inestimable using fishing data alone. Combined acoustic telemetry and longline data were incorporated into Jolly–Seber models using a Monte Carlo simulation approach. Abundance estimates were comparable to those with longline data only; however, the inclusion of acoustic telemetry data increased precision in the estimates. We conclude that acoustic telemetry is a useful tool for incorporating in capture–mark–recapture studies in the marine environment. Future studies should consider the application of acoustic telemetry within this framework when setting up the study design and sampling program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnason AN, Schwarz CJ, Gerrard JM (1991) Estimating closed population size and number of marked animals from sighting data. J Wildl Manag 51:41–46

    Google Scholar 

  • Barnett A, Semmens JM (2012) Sequential movement into coastal habitats and high spatial overlap of predator and prey suggest high predation pressure in protected areas. Oikos 121:882–890. doi:10.1111/j.1600-0706.2011.20000.x

    Article  Google Scholar 

  • Barnett A, Abrantes K, Stevens JD, Yick JL, Frusher SD, Semmens JM (2010a) Predator-prey relationships and foraging ecology of a marine apex predator with a wide temperate distribution. Mar Ecol Progr Ser 416:189–200. doi:10.3354/meps08778

    Article  Google Scholar 

  • Barnett A, Abrantes KG, Stevens JD, Bruce BD, Semmens JM (2010b) Fine-scale movements of the broadnose sevengill shark and its main prey, the gummy shark. PLoS ONE 5:e15464. doi:10.1371/journal.pone.0015464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barnett A, Stevens JD, Frusher SD, Semmens JM (2010c) Seasonal occurrence and population structure of the broadnose sevengill shark Notorynchus cepedianus in coastal habitats of south-east Tasmania. J Fish Biol 77:1688–1701. doi:10.1111/j.1095-8649.2010.02810.x

    Article  CAS  PubMed  Google Scholar 

  • Barnett A, Abrantes KG, Stevens JD, Semmens JM (2011) Site fidelity and sex-specific migration in a mobile apex predator: implications for conservation and ecosystem dynamics. Anim Behav 81:1039–1048. doi:10.1016/j.anbehav.2011.02.011

    Article  Google Scholar 

  • Besbeas P, Freeman SN, Morgan BJT, Catchpole EA (2002) Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics 58:540–547

    Article  CAS  PubMed  Google Scholar 

  • Bird T, Lyon J, Nicol S, McCarthy M, Barker R (2014) Estimating population size in the presence of temporary migration using a joint analysis of telemetry and capture recapture data. Methods Ecol Evol. doi:10.1111/2041-210X.12202

    Google Scholar 

  • Braccini JM (2008) Feeding ecology of two high-order predators from south-eastern Australia: the coastal broadnose and the deepwater sharpnose sevengill sharks. Mar Ecol Prog Ser 371:273–284

    Article  Google Scholar 

  • Burnham KP (1993) A theory for combined analysis of ring recovery and recapture data. In: Lebreton JD, North PM (eds) Marked individuals in the study of bird populations. Birkhäuser, Basel, pp 199–231

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Cochran WW, Lord RD Jr (1963) A radio-tracking system for wild animals. J Wildl Manag 27:9–24

    Article  Google Scholar 

  • Cooke SJ, Hinch SG, Wilkelski M, Andrews RD, Kuchel LJ, Wolcott TG, Butler PJ (2004) Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol 19:335–343

    Article  Google Scholar 

  • Cooke SJ, Hogan ZS, Butcher PA, Stokesbury MJ, Hinch SG, Fisk AT, Smith P, VanderZwaag D, Whoriskey F (2012) Ocean Tracking Network Canada: a network approach to addressing critical issues in fisheries and resource management with implications for ocean governance. Fisheries 36:583–592

    Article  Google Scholar 

  • Cooke SJ, Midwood JD, Thiem JD, Klimley P, Lucas MC, Thorstad EB, Eiler J, Holbrook C, Ebner BC (2013) Tracking animals in freshwater with electronic tags: past, present and future. Animal Biotelemetry 1:5. doi:10.1186/2050-3385-1-5

    Article  Google Scholar 

  • Cormack R (1964) Estimates of survival from the sighting of marked animals. Biometrika 51:429–438

    Article  Google Scholar 

  • Cortés E (2004) Life history patterns, demography, and population dynamics. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of the sharks and their relatives. CRC, Boca Raton

    Google Scholar 

  • Dale JJ, Stankus AM, Burns MS, Meyer CG (2011) The shark assemblage at French Frigate Shoals Atoll, Hawai’i: species composition, abundance and habitat use. PLoS ONE 6:e16962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dudgeon CL, Noad MJ, Lanyon JM (2008) Abundance and demography of a seasonal aggregation of zebra sharks Stegostoma fasciatum. Mar Ecol Progr Ser 368:269–281. doi:10.3354/meps07581

    Article  Google Scholar 

  • Dupuis JA, Schwarz CJ (2007) A Bayesian approach to the multistate Jolly–Seber capture–recapture model. Biometrics 63:1015–1022

    Article  PubMed  Google Scholar 

  • Eveson JP, Basson M, Hobday AJ (2012) Using electronic tag data to improve mortality and movement estimates in a tag-based spatial fisheries assessment model. Can J Fish Aquat Sci 69:869–883

    Article  Google Scholar 

  • Forcada J, Malone D, Royle JA, Staniland IJ (2009) Modelling predation by transient leopard seals for an ecosystem-based management of Southern Ocean fisheries. Ecol Model 220:1513–1521

    Article  Google Scholar 

  • Gibson D, Blomberg EJ, Patricelli GL, Krakauer AH, Atamian MT, Sedinger JS (2013) Effects of radio collars on survival and lekking behaviour of male Greater Sage-Grouse. Condor 115:769–776

    Article  Google Scholar 

  • Gwinn DC, Brown P, Tetzlaff JC, Allen MS (2011) Evaluating mark-recapture sampling designs for fish in an open riverine system. Mar Freshw Res 62:835–840

    Article  CAS  Google Scholar 

  • Heupel MR, Simpfendorfer CA (2002) Estimation of mortality of juvenile blacktip sharks, Carcharhinus limbatus, within a nursery area using telemetry data. Can J Fish Aquat Sci 59:624–632. doi:10.1139/f02-036

    Article  Google Scholar 

  • Hewitt DA, Janney EC, Hayes BS, Shively RS (2010) Improving inferences from fisheries capture–ecapture studies through remote detection of PIT tags. Fisheries 35:217–231. doi:10.1577/1548-8446-35.5.217

    Article  Google Scholar 

  • Johnson HE, Scott Mills L, Wehausen JD, Stephenson TR (2010) Combining ground count, telemetry, and mark-resight data to infer population dynamics in an endangered species. J Appl Ecol 47:1083–1093. doi:10.1111/j.1365-2664.2010.01846.x

    Article  Google Scholar 

  • Jolly G (1965) Explicit estimates from capture–recapture data with both death and immigration-scholastic model. Biometrika 52:225–247

    Article  CAS  PubMed  Google Scholar 

  • Kendall WL et al (1997) Estimating temporary emigration using capture–recapture data with Pollock’s robust design. Ecology 78:563–578

    Google Scholar 

  • Kendall WL et al (2013) Combining dead recovery, auxiliary observations and robust design data to estimate demographic parameters from marked individuals. Methods Ecol Evol 4:828–835. doi:10.1111/2041-210x.12077

    Article  Google Scholar 

  • Kirkwood R et al (2010) Continued population recover by Australian fur seals. Mar Freshw Res 61:695–701

    Article  CAS  Google Scholar 

  • Knip DM, Heupel MR, Simpfendorfer CA (2012) Mortality rates for two shark species occupying a shared coastal environment. Fish Res 125–126:184–189. doi:10.1016/j.fishres.2012.02.023

    Article  Google Scholar 

  • Laake J, Rexstad E (2008) RMark—an alternative to building linear models in MARK. In: Cooch E, White GC (eds) Program MARK: a gentle introduction, 9th edn. Colorado State University, Fort Collins, pp C1–C115. http://www.phidot.org/software/mark/docs/book. Accessed 27 May 2014

  • Lee KA, Huveneers C, Gimenez O, Peddemors V, Harcourt RG (2014) To catch or to sight? A comparison of demographic parameter estimates obtained from mark-recapture and mark-resight models. Biodivers Conserv 23:2781–2800. doi:10.1007/s10531-014-0748-9

    Article  Google Scholar 

  • McClintock BT, White GC (2009) A less field-intensive robust design for estimating demographic parameters with mark-resight data. Ecology 90:313–320

    Article  PubMed  Google Scholar 

  • McClintock BT, White GC (2012) From NOREMARK to MARK: software for estimating demographic parameters with mark-resight methodology. J Ornithol 152:641–650

    Article  Google Scholar 

  • Neal AK, White GC, Gill RB, Reed DF, Olterman JH (1993) Evaluation of mark-resight model assumptions for estimating mountain sheep numbers. J Wildl Manag 57:436–450

    Article  Google Scholar 

  • Payne NL, Taylor MD, Watanabe YY, Semmens JM (2014) From physiology to physics: are we recognizing the flexibility of biologging tools? J Exp Biol 217:317–322. doi:10.1242/jeb.093922

    Article  PubMed  Google Scholar 

  • Pine WE, Pollock KH, Hightower JE, Kwak TJ, Rice JA (2003) A review of tagging methods for estimating fish population size and components of mortality. Fisheries 28:10–23. doi:10.1577/1548-8446(2003)28[10:arotmf]2.0.co;2

    Article  Google Scholar 

  • Pollock KH, Winterstein SR, Conroy MJ (1989) Estimation and analysis of survival distributions for radio-tagged animals. Biometrics 45:99–109

    Article  Google Scholar 

  • Pollock KH, Nichols JD, Brownie C, Hines JE (1990) Statistical interence for capture–recapture experiments. Wildl Monogr 107:1–97

    Google Scholar 

  • Pollock KH, Jiang HH, Hightower JE (2004) Combining telemetry and fisheries tagging models to estimate fishing and natural mortality rates. Trans Am Fish Soc 133:639–648

    Article  Google Scholar 

  • Poole D (2002) Bayesian estimation of survival from mark-recapture data. J Agric Biol Environ Stat 7:264–276

    Article  Google Scholar 

  • Powell LA, Conroy MJ, Hines JE, Nichols JD, Krementz DG (2000) Simultaneous use of mark-recapture and radiotelemetry to estimate survival, movement, and capture rates. J Wildl Manag 64:302–313

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R version 3.0.1. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/. Accessed 16 May 2013

  • Schaub M, Gimenez O, Sierro A, Arlettaz R (2007) Use of integrated modeling to enhance estimates of population dynamics obtained from limited data. Conserv Biol 21:945–955

    Article  PubMed  Google Scholar 

  • Schwarz CJ, Arnason AN (1996) A general methodology for the analysis of capture–recapture experiments in open populations. Biometrics 52:860–873

    Article  Google Scholar 

  • Seber G (1965) A note on the multiple-recapture census. Biometrika 52:249–259

    Article  CAS  PubMed  Google Scholar 

  • Sharples RJ, Mackenzie ML, Hammond PS (2009) Estimating seasonal abundance of a central place forager using counts and telemetry data. Mar Ecol Prog Ser 378:289–298

    Article  Google Scholar 

  • Smith SE, Au DW, Show C (1998) Intrinsic rebound potentials of 26 species of Pacific sharks. Mar Freshw Res 49:663–678

    Article  Google Scholar 

  • Sollman R et al (2013) A spatial mark-resight model augmented with telmetry data. Ecology 94:553–559

    Article  Google Scholar 

  • Stehfest KM, Patterson TA, Barnett A (2014) Semmes JM (2014) Markov models and network analysis reveal sex-specific differences in the space-use of a coastal apex predator. Oikos 000:001–012. doi:10.1111/oik.01429

    Google Scholar 

  • Tomkiewicz SM, Fuller MR, Kie JG, Bates KK (2010) Global positioning system and associated technologies in animal behaviour and ecological research. Philos Trans R Soc Lond B 365:2163–2176. doi:10.1098/rstb.2010.0090

    Article  Google Scholar 

  • Trolle M, Kéry M (2003) Estimation of ocelot density in the pantanal using capture–recapture analysis of camera trapping data. J Mammal 84(2):607–614

    Article  Google Scholar 

  • Trolliet F, Huynen MC, Vermeulen C, Hambuckers A (2014) Use of camera traps for wildlife studies. A review. Base [En ligne] 18:446–454. http://popups.ulg.ac.be/1780-4507/index.php?id=11542. Accessed 11 Jan 2015

  • White GC, Burnham KP (1999) Program MARK: survival estimates from populations of marked animals. Bird Study 46(Suppl):120e–138e

    Article  Google Scholar 

  • White GC, Shenk TM (2001) Population esimation with radio-marked animals. In: Millspaugh J, Marzlufff JM (eds) Radio tracking and animal populations. Academic, San Diego

    Google Scholar 

  • Whitlock RE, McAllister MK, Block BA (2012) Estimating fishing and natural mortality rates for Pacific bluefin tuna (Thunnus orientalis) using electronic tagging data. Fish Res 119–120:115–127. doi:10.1016/j.fishres.2011.12.015

    Article  Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations: modeling, estimation, and decision making. Academic, San Diego

    Google Scholar 

Download references

Acknowledgments

We thank Simon Blomberg for advice on mark–recapture models, E. Forbes, J. Yick and D. Jones for field assistance, and the Australian Animal Tagging and Monitoring System (AATAMS) for the loan of 12 receivers. This study was supported by grants to A.B. from the Save Our Seas Foundation, Winifred Violet Scott Foundation and the Holsworth Wildlife Research Endowment. All research was conducted with approval from the University of Tasmania Animal Ethics Committee (#A0009120), under Permit #8028 from the Department of Primary Industries and Water.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine L. Dudgeon.

Additional information

Communicated by Aaron J. Wirsing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudgeon, C.L., Pollock, K.H., Braccini, J.M. et al. Integrating acoustic telemetry into mark–recapture models to improve the precision of apparent survival and abundance estimates. Oecologia 178, 761–772 (2015). https://doi.org/10.1007/s00442-015-3280-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3280-z

Keywords

Navigation