Skip to main content
Log in

High- and medium-molecular-weight neurofilament proteins define specific neuron types in the guinea-pig enteric nervous system

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Previous studies have demonstrated that neurofilament proteins are expressed by type II neurons in the enteric plexuses of a range of species from mouse to human. However, two previous studies have failed to reveal this association in the guinea-pig. Furthermore, immunohistochemistry for neurofilaments has revealed neurons with a single axon and spiny dendrites in human and pig but this morphology has not been described in the guinea-pig or other species. We have used antibodies against high- and medium-weight neurofilament proteins (NF-H and NF-M) to re-examine enteric neurons in the guinea-pig. NF-H immunoreactivity occurred in all type II neurons (identified by their IB4 binding) but these neurons were never NF-M-immunoreactive. On the other hand, 17% of myenteric neurons expressed NF-M. Many of these were uni-axonal neurons with spiny dendrites and nitric oxide synthase (NOS) immunoreactivity. NOS immunoreactivity occurred in surface expansions of the cytoplasm that did not contain neurofilament immunoreactivity. Thus, because of their NOS immunoreactivity, spiny neurons had the appearance of type I neurons. This indicates that the apparent morphologies and the morphological classifications of these neurons are dependent on the methods used to reveal them. We conclude that spiny type I NOS-immunoreactive neurons have similar morphologies in human and guinea-pig and that many of these are inhibitory motor neurons. Both type II and neuropeptide-Y-immunoreactive neurons in the submucosal ganglia exhibit NF-H immunoreactivity. NF-M has been observed in nerve fibres, but not in nerve cell bodies, in the submucosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Accili EA, Dhatt N, Buchan AMJ (1995) Neural somatostatin, vasoactive intestinal polypeptide and substance P in canine and human jejunum. Neurosci Lett 185:37–40

    Article  PubMed  CAS  Google Scholar 

  • Balemba OB, Mbassa GK, Semuguruka WD, Assey RJ, Kahwa CKB, Hay-Schmidt A, Dantzer V (1999) The topography, architecture and structure of the enteric nervous system in the jejunum and ileum of cattle. J Anat 195:1–9

    Article  PubMed  Google Scholar 

  • Barbiers M, Timmermans JP, Adriaensen D, De Groodt Lasseel MHA, Scheuermann DW (1995) Projections of neurochemically specified neurons in the porcine colon. Histochemistry 103:115–126

    Article  PubMed  CAS  Google Scholar 

  • Brehmer A (2006) Structure of enteric neurons. Adv Anat 186:1–95

    CAS  Google Scholar 

  • Brehmer A (2007) The value of neurofilament-immunohistochemistry for identifying enteric neuron types—special reference to intrinsic primary afferent (sensory) neurons. In: Arlen RK (ed) New research on neurofilament proteins. Nova Science, New York, pp 99–114

    Google Scholar 

  • Brehmer A, Schrödl F, Neuhuber W (1999) Morphological classifications of enteric neurons—100 years after Dogiel. Anat Embryol 200:125–135

    Article  PubMed  CAS  Google Scholar 

  • Brehmer A, Schrödl F, Neuhuber W (2002) Morphological phenotyping of enteric neurons using neurofilament immunohistochemistry renders chemical phenotyping more precise in porcine ileum. Histochem Cell Biol 117:257–263

    Article  PubMed  CAS  Google Scholar 

  • Brehmer A, Blaser B, Seitz G, Schrödl F, Neuhuber W (2004) Pattern of lipofuscin pigmentation in nitrergic and non-nitrergic, neurofilament immunoreactive myenteric neuron types of human small intestine. Histochem Cell Biol 121:13–20

    Article  PubMed  CAS  Google Scholar 

  • Brehmer A, Schrödl F, Neuhuber W (2006) Morphology of VIP/nNOS-immunoreactive myenteric neurons in the human gut. Histochem Cell Biol 125:557–565

    Article  PubMed  CAS  Google Scholar 

  • Cajal SRY (1911) Histologie du système nerveux de l’homme et des vertébrés. Maloine, Paris

    Google Scholar 

  • Costa M, Furness JB, Pompolo S, Brookes SJH, Bornstein JC, Bredt DS, Snyder SH (1992) Projections and chemical coding of neurons with immunoreactivity for nitric oxide synthase in the guinea-pig small intestine. Neurosci Lett 148:121–125

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Brookes SJH, Steele PA, Gibbins I, Burcher E, Kandiah CJ (1996) Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience 75:949–967

    Article  PubMed  CAS  Google Scholar 

  • Dahl D, Bignami A (1977) Preparation of antisera to neurofilament protein from chicken brain and human sciatic nerve. J Comp Neurol 176:645–657

    Article  PubMed  CAS  Google Scholar 

  • Dogiel AS (1899) Über den Bau der Ganglien in den Geflechten des Darmes und der Gallenblase des Menschen und der Säugetiere. Arch Anat Physiol Leipzig Anat Abt Jg 1899:130–158

    Google Scholar 

  • Ekblad E, Alm P, Sundler F (1994) Distribution, origin and projections of nitric oxide synthase-containing neurons in gut and pancreas. Neuroscience 63:233–248

    Article  PubMed  CAS  Google Scholar 

  • Fairman CL, Clagett Dame M, Lennon VA, Epstein ML (1995) Appearance of neurons in the developing chick gut. Dev Dyn 204:192–201

    PubMed  CAS  Google Scholar 

  • Furness JB (2006) The enteric nervous system. Blackwell, Oxford

    Google Scholar 

  • Furness JB, Costa M, Walsh JH (1981) Evidence for and significance of the projection of VIP neurons from the myenteric plexus to the taenia coli in the guinea-pig. Gastroenterology 80:1557–1561

    PubMed  CAS  Google Scholar 

  • Furness JB, Costa M, Keast JR (1984) Choline acetyltransferase and peptide immunoreactivity of submucous neurons in the small intestine of the guinea-pig. Cell Tissue Res 237:329–336

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Costa M, Gibbins IL, Llewellyn Smith IJ, Oliver JR (1985) Neurochemically similar myenteric and submucous neurons directly traced to the mucosa of the small intestine. Cell Tissue Res 241:155–163

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Bornstein JC, Trussell DC (1988) Shapes of nerve cells in the myenteric plexus of the guinea-pig small intestine revealed by the intracellular injection of dye. Cell Tissue Res 254:561–571

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Trussell DC, Pompolo S, Bornstein JC, Smith TK (1990) Calbindin neurons of the guinea-pig small intestine: quantitative analysis of their numbers and projections. Cell Tissue Res 260:261–272

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Li ZS, Young HM, Forstermann U (1994) Nitric oxide synthase in the enteric nervous system of the guinea-pig: a quantitative description. Cell Tissue Res 277:139–149

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Robbins HL, Xiao J, Stebbing MJ, Nurgali K (2004) Projections and chemistry of Dogiel type II neurons in the mouse colon. Cell Tissue Res 317:1–12

    Article  PubMed  CAS  Google Scholar 

  • Gambetti P, Autilio-Gambetti L, Papasozomenos SC (1981) Bodian’s silver method stains neurofilament polypeptides. Science 213:1521–1522

    Article  PubMed  CAS  Google Scholar 

  • Ganns D, Schrödl F, Neuhuber W, Brehmer A (2006) Investigation of general and cytoskeletal markers to estimate numbers and proportions of neurons in the human intestine. Histol Histopathol 21:41–51

    PubMed  CAS  Google Scholar 

  • Gray EG, Guillery RW (1961) The basis for silver staining of synapses of the mammalian spinal cord: a light and electron microscope study. J Physiol (Lond) 157:581–588

    CAS  Google Scholar 

  • Hens J, Schrödl F, Brehmer A, Adriaensen D, Neuhuber W, Scheuermann DW, Schemann M, Timmermans J-P (2000) Mucosal projections of enteric neurons in the porcine small intestine. J Comp Neurol 421:426–436

    Article  Google Scholar 

  • Hens J, Vanderwinden J-M, De Laet MH, Scheuermann DW, Timmermans J-P (2001) Morphological and neurochemical identification of enteric neurones with mucosal projections in the human small intestine. J Neurochem 76:464–471

    Article  PubMed  CAS  Google Scholar 

  • Hind A, Migliori M, Thacker M, Staikopoulos V, Nurgali K, Chiocchetti R, Furness JB (2005) Primary afferent neurons intrinsic to the intestine, like primary afferent neurons of spinal and cranial sensory ganglia, bind the lectin, IB4. Cell Tissue Res 321:151–157

    Article  PubMed  Google Scholar 

  • Honjin R, Izumi S, Osugi H (1959) The distribution and morphology of argentophile and argentophobe nerve cells in the myenteric plexus of the digestive tube of the mouse: a quantitative study. J Comp Neurol 111:291–319

    Article  PubMed  CAS  Google Scholar 

  • Hu H-Z, Gao N, Lin Z, Gao C, Liu S, Ren J, Xia Y, Wood JD (2002) Chemical coding and electrophysiology of enteric neurons expressing neurofilament 145 in guinea pig gastrointestinal tract. J Comp Neurol 442:189–203

    Article  PubMed  CAS  Google Scholar 

  • Kunze WAA, Clerc N, Furness JB, Gola M (2000) The soma and neurites of primary afferent neurons in the guinea-pig intestine respond differentially to deformation. J Physiol (Lond) 526:375–385

    Article  CAS  Google Scholar 

  • Lawson SN, Perry MJ, Prabhakar E, McCarthy PW (1993) Primary sensory neurones: neurofilament, neuropeptides, and conduction velocity. Brain Res Bull 30:239–243

    Article  PubMed  CAS  Google Scholar 

  • Lee MK, Cleveland DW (1996) Neuronal intermediate filaments. Annu Rev Neurosci 19:187–217

    Article  PubMed  CAS  Google Scholar 

  • Li ZS, Furness JB (2000) Inputs from intrinsic sensory neurons to NOS immunoreactive neurons in the myenteric plexus of guinea-pig ileum. Cell Tissue Res 299:1–8

    Article  PubMed  CAS  Google Scholar 

  • Mao Y, Wang B, Kunze W (2006) Characterization of myenteric sensory neurons in the mouse small intestine. J Neurophysiol 96:998–1010

    Article  PubMed  Google Scholar 

  • Mazzuoli G, Mazzoni M, Albanese V, Clavenzani P, Lalatta-Consterbosa G, Lucchi ML, Furness JB, Chiocchetti R (2007) Morphology and neurochemistry of descending and ascending myenteric plexus neurons of sheep ileum. Anat Rec 290:1480–1491

    Article  CAS  Google Scholar 

  • Pompolo S, Furness JB (1990) Ultrastructure and synaptology of neurons immunoreactive for gamma-aminobutyric acid in the myenteric plexus of the guinea pig small intestine. J Neurocytol 19:539–549

    Article  PubMed  CAS  Google Scholar 

  • Porter AJ, Wattchow DA, Brookes SJH, Costa M (1997) The neurochemical coding and projections of circular muscle motor neurons in the human colon. Gastroenterology 113:1916–1923

    Article  PubMed  CAS  Google Scholar 

  • Qu Z-D, Thacker M, Castelucci P, Bagyánszki M, Epstein ML, Furness JB (2008) Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res (in press)

  • Sang Q, Williamson S, Young HM (1997) Projections of chemically identified myenteric neurons of the small and large intestine of the mouse. J Anat 190:209–222

    Article  PubMed  CAS  Google Scholar 

  • Sayegh A, Ritter RC (2003) Morphology and distribution of nitric oxide synthase-, neurokinin-1 receptor-, calretinin-, calbindin-, and neurofilament-M-immunoreactive neurons in the myenteric and submucosal plexuses of the rat small intestine. Anat Rec 271A:209–216

    Article  CAS  Google Scholar 

  • Schofield GC (1968) Anatomy of muscular and neural tissues in the alimentary canal. In: Code CF (ed) Handbook of physiology: alimentary canal, vol 46. American Physiological Society, Washington, D.C., pp 1579–1627

    Google Scholar 

  • Song ZM, Brookes SJH, Costa M (1994) All calbindin-immunoreactive myenteric neurons project to the mucosa of the guinea-pig small intestine. Neurosci Lett 180:219–222

    Article  PubMed  CAS  Google Scholar 

  • Stach W (1980) Zur neuronalen Organisation des Plexus myentericus (Auerbach) im Schweinedünndarm. I. Typ I-Neurone. Z Mikrosk Anat Forsch 94:833–849

    PubMed  CAS  Google Scholar 

  • Stach W (1989) A revised morphological classification of neurons in the enteric nervous system. In: Singer MV, Goebell H (eds) Nerves and the gastrointestinal tract. Mtp, Lancaster, pp 29–45

    Google Scholar 

  • Timmermans JP, Barbiers M, Scheuermann DW, Stach W, Adriaensen D, Mayer B, De Groodt Lasseel MHA (1994) Distribution pattern, neurochemical features and projections of nitrergic neurons in the pig small intestine. Ann Anat 176:515–525

    PubMed  CAS  Google Scholar 

  • Williamson S, Pompolo S, Furness JB (1996) GABA and nitric oxide synthase immunoreactivities are colocalized in a subset of inhibitory motor neurons of the guinea-pig small intestine. Cell Tissue Res 284:29–37

    Article  PubMed  CAS  Google Scholar 

  • Wolf M, Schrödl F, Neuhuber W, Brehmer A (2007) Calcitonin gene-related peptide: a marker for putative primary afferent neurons in the pig small intestinal myenteric plexus? Anat Rec 290:1273–1279

    Article  Google Scholar 

  • Young HM, Furness JB, Povey JM (1995) Analysis of connections between nitric oxide synthase neurons in the myenteric plexus of the guinea-pig small intestine. J Neurocytol 24:257–263

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Furness.

Additional information

This work was supported by a grant from the National Health and Medical Council of Australia (grant number 400020).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivera, L.R., Thacker, M. & Furness, J.B. High- and medium-molecular-weight neurofilament proteins define specific neuron types in the guinea-pig enteric nervous system. Cell Tissue Res 335, 529–538 (2009). https://doi.org/10.1007/s00441-008-0732-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0732-3

Keywords

Navigation