Skip to main content

Advertisement

Log in

Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Invasive phytoplasmas wreak havoc on coconut palms worldwide, leading to high loss of income, food insecurity and extreme poverty of farmers in producing countries. Phytoplasmas as strictly biotrophic insect-transmitted bacterial pathogens instigate distinct changes in developmental processes and defence responses of the infected plants and manipulate plants to their own advantage; however, little is known about the cellular and molecular mechanisms underlying host–phytoplasma interactions. Further, phytoplasma-mediated transcriptional alterations in coconut palm genes have not yet been identified. This study evaluated the whole transcriptome profiles of naturally infected leaves of Cocos nucifera ecotype Malayan Red Dwarf in response to yellow decline phytoplasma from group 16SrXIV, using RNA-Seq technique. Transcriptomics-based analysis reported here identified genes involved in coconut innate immunity. The number of down-regulated genes in response to phytoplasma infection exceeded the number of genes up-regulated. Of the 39,873 differentially expressed unigenes, 21,860 unigenes were suppressed and 18,013 were induced following infection. Comparative analysis revealed that genes associated with defence signalling against biotic stimuli were significantly overexpressed in phytoplasma-infected leaves versus healthy coconut leaves. Genes involving cell rescue and defence, cellular transport, oxidative stress, hormone stimulus and metabolism, photosynthesis reduction, transcription and biosynthesis of secondary metabolites were differentially represented. Our transcriptome analysis unveiled a core set of genes associated with defence of coconut in response to phytoplasma attack, although several novel defence response candidate genes with unknown function have also been identified. This study constitutes valuable sequence resource for uncovering the resistance genes and/or susceptibility genes which can be used as genetic tools in disease resistance breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albertazzi G, Milc J, Caffagni A, Francia E, Roncaglia E et al (2009) Gene expression in grapevine cultivars in response to Bois Noir phytoplasma infection. Plant Sci 176:792–804

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Barakat A, DiLoreto DS, Zhang Y, Smith C, Baier K et al (2009) Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection. BMC Plant Biol 9:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertaccini A, Duduk B, Paltrinieri S, Contaldo N (2014) Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. Am J Plant Sci 5:1763–1788

    Article  Google Scholar 

  • Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR et al (2010) Biotic stress globally downregulates photosynthesis genes. Plant, Cell Environ 33:1597–1613

    Article  CAS  Google Scholar 

  • Boyd LA, Ridout C, ÓSullivan DM, Leach JE, Leung H (2013) Plant–pathogen interactions: disease resistance in modern agriculture. Trends Genet 29:233–240

    Article  CAS  PubMed  Google Scholar 

  • Broschat TK, Harrison NA, Donselman H (2002) Losses to lethal yellowing cast doubt on coconut cultivar resistance. Palms 46:185–189

    Google Scholar 

  • Curković PM (2008) Auxin-treatment induces recovery of phytoplasma-infected periwinkle. J Appl Microbiol 105:1826–1834

    Article  Google Scholar 

  • Deng S, Hiruki C (1991) Amplification of 16S rRNA genes from culturable and non culturable mollicutes. J Microbiol Methods 14:53–61

    Article  CAS  Google Scholar 

  • Ding Y, Wei W, Wu W, Davis RE, Jiang Y et al (2013a) Role of gibberellic acid in tomato defence against potato purple top phytoplasma infection. Ann Appl Biol 162:191–199

    Article  CAS  Google Scholar 

  • Ding Y, Wu W, Wei W, Davis RE, Lee I-M et al (2013b) Potato purple top phytoplasma-induced disruption of gibberellins homeostasis in tomato plants. Ann Appl Biol 162:131–139

    Article  CAS  Google Scholar 

  • Du Toit A (2014) Phytoplasma converts plants into zombies. Nat Rev Microbiol 12:393

    Article  PubMed  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38(Web Server issue):W64–W70

  • Ebrahim S, Usha K, Singh B (2011) Pathogenesis related (PR) proteins in plant defense mechanism. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances, vol 2. Formatex Research Center, Badajoz, pp 1043–1054

    Google Scholar 

  • Etalo DW, Stulemeijer IJ, van Esse HP, de Vos RC, Bouwmeester HJ et al (2013) System-wide hypersensitive response-associated transcriptome and metabolome reprogramming in tomato. Plant Physiol 62:1599–1617

    Article  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  • Goeck J, Nekrutenko A, Taylor J (2010) The Galaxy Team. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life science. Genome Biol 11:R86

    Article  Google Scholar 

  • Gundersen DE, Lee I-M (1996) Ultrasensitive detection of phytoplasma by nested-PCR assays using two universal primer sets. Phytopathol Mediterr 35:144–151

    CAS  Google Scholar 

  • Hogenhout S, Oshima K, Ammar ED, Kakizawa S, Kingdom H et al (2008) Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9:403–423

    Article  CAS  PubMed  Google Scholar 

  • Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M et al (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci USA 106:6416–6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hren M, Nikolić P, Rotter A, Blejec A, Terrier N et al (2009) “Bois noir” phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genom 10:460

    Article  Google Scholar 

  • IRPCM Phytoplasma/Spiroplasma Working Team-Phytoplasma taxonomy group (2004) “Candidatus Phytoplasma”, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255

    Article  Google Scholar 

  • Jaeger PA, Doherty C, Ideker T (2012) Modeling transcriptome dynamics in a complex world. Cell 151:1161–1162

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Dang JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 14:1754–1760

    Article  Google Scholar 

  • Liu R, Dong Y, Fan G, Zhao Z, Deng M et al (2013) Discovery of genes related to witches broom disease in Paulownia tomentosa × Paulownia fortunei by a de novo assembled transcriptome. PLoS ONE 8(11):e80238

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu LY, Tseng HI, Lin CP, Lin YY, Huang YH, Ck Huang, Chang TH, Lin SS (2014) High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches’-broom phytoplasma infection. Plant Cell Physiol 55:942–957

    Article  CAS  PubMed  Google Scholar 

  • Maejima K, Oshima K, Namba S (2014) Exploring the phytoplasmas, plant pathogenic bacteria. J Gen Plant Pathol 80:210–221

    Article  CAS  Google Scholar 

  • Mou H-Q, Lu J, Zhu S-F, Lin C-L, Tian G-Z et al (2013) Transcriptomic analysis of Paulownia infected by paulownia witches’-broom Phytoplasma. PLoS ONE 8(10):e77217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naderali N, Nejat N, Tan YH, Vadamalai G (2013) First report of two distinct phytoplasma species, Candidatus Phytoplasma cynodontis and Candidatus Phytoplasma asteris, simultaneously associated with yellow decline of Wodyetia bifurcata (foxtail palm) in Malaysia. Plant Dis 97:1504

    Article  Google Scholar 

  • Nagano AJ, Sato Y, Mihara M, Antonio BA, Motoyama R, Itoh H, Nagamura Y, Izawa T (2012) Deciphering and prediction of transcriptome dynamics under fluctuating field conditions. Cell 151:1358–1369

    Article  CAS  PubMed  Google Scholar 

  • Nejat N, Tan YH (2014) Genome plasticity in obligate parasitic phytoplasmas. In: Katsy E (ed) Plasticity in plant-growth-promoting and phytopathogenic bacteria. Springer, New York, pp 155–169

    Chapter  Google Scholar 

  • Nejat N, Vadamalai G (2010) Phytoplasma detection in coconut palm and other tropical crops. Plant Pathol J 9:101–110

    Google Scholar 

  • Nejat N, Vadamalai G (2013) Diagnostic techniques for detection of phytoplasma diseases: past and present. J Plant Dis Protect 120:16–25

    CAS  Google Scholar 

  • Nejat N, Sijam K, Abdullah SNA, Vadamalai G, Dickinson M (2009a) Molecular characterization of a phytoplasma associated with coconut yellow decline (CYD) in Malaysia. Am J Appl Sci 6:1331–1340

    Article  CAS  Google Scholar 

  • Nejat N, Sijam K, Abdullah SNA, Vadamalai G, Dickinson M (2009b) Phytoplasmas associated with disease of coconut in Malaysia: phylogenetic groups and host plant species. Plant Pathol 58:1152–1160

    Article  CAS  Google Scholar 

  • Nejat N, Valdiani A, Cahill D, Tan Y-H, Maziah M, Abiri R (2015) Ornamental exterior versus therapeutic interior of Madagascar periwinkle (Catharanthus roseus): the two faces of a versatile herb. Sci World J ID: 982412, 19

  • Nicaise V, Roux M, Zipfel C (2009) Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol 150:1638–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novák J, Pavlů J, Novák O, Nožková-Hlávčková V, Špundová M et al (2013) High cytokinin levels induce a hypersensitive-like response in tobacco. Ann Bot 112:41–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y et al (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    Article  CAS  PubMed  Google Scholar 

  • Piffanelli P, Zhou F, Casias C, Orme J, Jarosch B et al (2002) The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol 129:1076–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Bakht S, Qin B, Leggett M, Hemmings A et al (2006) A different function for a member of an ancient and highly conserved cytochrome P450 family: from essential sterols to plant defense. Proc Natl Acad Sci USA 103:18848–18853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santi S, Grisan S, Pierasco A, De Marco F, Mosetti R (2013) Laser microdissection of grapevine leaf phloem infected by stolbur reveals site-specific gene responses associated to sucrose transport and metabolism. Plant, Cell Environ 36:343–355

    Article  CAS  Google Scholar 

  • Schneider B, Seemüller E, Smart CD, Kirkpatrick BC (1995) Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. In: Razin R, Tully JG (eds) Molecular and diagnostic procedures in mycoplasmology. Academic Press, San Diego, pp s 369–s 380

    Chapter  Google Scholar 

  • Sugio A, Hogenhout SA (2012) The genome biology of phytoplasma: modulators of plants and insects. Curr Opin Microbiol 15:247–254

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellins 2-oxidases, multifunctional enzymes involved in gibberellins deactivation. Proc Natl Acad Sci USA 96:4698–4703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward ER, Payne GB, Moyer MB, Williams SC, Dincher SS et al (1991) Differential regulation of beta-1,3-glucanase messenger RNAs in response to pathogen infection. Plant Physiol 96:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Davis RE, Nuss DL, Zhao Y (2013) Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture. Proc Natl Acad Sci USA 110:19149–19154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Liu Z, Yang Y, Xiao Y, Mason AS et al (2014) Selection of reference genes for quantitative real-time PCR in Cocos nucifera during abiotic stress. Botany 92:179–186

    Article  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134

    Article  CAS  Google Scholar 

  • Zhao Y, Davis RE, Wei W, Lee IM (2015) Should ‘Candidatus Phytoplasma’ be retained within the order Acholeplasmatales? Int J Syst Evol Microbiol. doi:10.1099/ijs.0.000050

Download references

Acknowledgments

The authors would like to acknowledge the University of Putra, Malaysia, for supporting this project.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naghmeh Nejat.

Additional information

Communicated by B. Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

Supplementary material 2 (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejat, N., Cahill, D.M., Vadamalai, G. et al. Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol Genet Genomics 290, 1899–1910 (2015). https://doi.org/10.1007/s00438-015-1046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1046-2

Keywords

Navigation