Skip to main content
Log in

Ion transport in broad bean leaf mesophyll under saline conditions

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Salt stress reduces the ability of mesophyll tissue to respond to light. Potassium outward rectifying channels are responsible for 84 % of Na + induced potassium efflux from mesophyll cells.

Modulation in ion transport of broad bean (Vicia faba L.) mesophyll to light under increased apoplastic salinity stress was investigated using vibrating ion-selective microelectrodes (the MIFE technique). Increased apoplastic Na+ significantly affected mesophyll cells ability to respond to light by modulating ion transport across their membranes. Elevated apoplastic Na+ also induced a significant K+ efflux from mesophyll tissue. This efflux was mediated predominately by potassium outward rectifying channels (84 %) and the remainder of the efflux was through non-selective cation channels. NaCl treatment resulted in a reduction in photosystem II efficiency in a dose- and time-dependent manner. In particular, reductions in Fv′/Fm′ were linked to K+ homeostasis in the mesophyll tissue. Increased apoplastic Na+ concentrations induced vanadate-sensitive net H+ efflux, presumably mediated by the plasma membrane H+-ATPase. It is concluded that the observed pump’s activation is essential for the maintenance of membrane potential and ion homeostasis in the cytoplasm of mesophyll under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DMSO:

Dimethyl sulfoxide

KOR:

Potassium outward rectifying channels

NHX:

Sodium/proton exchanger

NSCC:

Non-selective cation channels

PCD:

Programmed cell death

ROS:

Reactive oxygen species

TEA:

Tetraethylammonium

References

  • Anschütz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol 171:670–687

    Article  PubMed  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Ayala F, O’Leary JW, Schumaker KS (1996) Increased vacuolar and plasma membrane H+-ATPase activities in Salicornia bigelovii Torr. in response to NaCl. J Exp Bot 47:25–32

    Article  CAS  Google Scholar 

  • Banuelos MA, Garciadeblas B, Cubero B, Rodriguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795

    Article  PubMed  PubMed Central  Google Scholar 

  • Blom-Zandstra M, Vogelzang SA, Veen BW (1998) Sodium fluxes in sweet pepper exposed to varying sodium concentrations. J Exp Bot 49:1863–1868

    Article  CAS  Google Scholar 

  • Blum DE, Elzenga JTM, Linnemeyer PA, Van Volkenburgh E (1992) Stimulation of growth and ion uptake in bean leaves by red and blue light. Plant Physiol 100:1968–1975

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blumwald E, Aharon G, Apse M (2000) Sodium transport in plant cells. BBA 1465:140–151

    Article  PubMed  CAS  Google Scholar 

  • Bose J, Shabala L, Pottosin I, Zeng F, Velarde-Buendia AM, Poschenrieder C, Hariadi Y, Shabala S (2013) Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K +-permeable channels to ROS: physiological traits that differentiate salinity tolerance between pea and barley. Plant Cell Environ. doi:10.1111/pce.12180

    PubMed  Google Scholar 

  • Bottrill DE, Possingham JV, Kriedemann PE (1970) The effect of nutrient deficiencies on phosynthesis and respiration in spinach. Plant Soil 32:424–438

    Article  CAS  Google Scholar 

  • Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95:628–635

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot 45:1251–1257

    Article  CAS  Google Scholar 

  • Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676–683

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cheeseman JM (2013) The integration of activity in saline environments: problems and perspectives. Funct Plant Biol 40:759–774

    CAS  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246

    Article  CAS  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    Article  PubMed  CAS  Google Scholar 

  • Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657–661

    Article  PubMed  CAS  Google Scholar 

  • Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59:2697–2706

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signaling and development. New Phytol 175:387–404

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Physiol Plant Mol Biol 53:67–107

    Article  CAS  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  PubMed  CAS  Google Scholar 

  • Dreyer I, Uozumi N (2011) Potassium channels in plant cells. FEBS J 278:4293–4303

    Article  PubMed  CAS  Google Scholar 

  • Ellouzi H, Ben Hamed K, Cela J, Munne-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142:128–143

    Article  PubMed  CAS  Google Scholar 

  • Elzenga JTM, Prins HBA, Volkenburgh E (1995) Light-induced membrane potential changes of epidermal and mesophyll cells in growing leaves of Pisum sativum. Planta 197:127–134

    Article  CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA (2001) Salinity tolerance in Hordeum vulgare: ion concentrations in root cells of cultivars differing in salt tolerance. Plant Soil 231:1–9

    Article  CAS  Google Scholar 

  • Foucher A-E, Reiser J-B, Ebel C, Housset D, Jault JM (2012) Potassium acts as a GTPase-activating element on each nucleotide-binding domain of the essential Bacillus subtilis EngA. PLoS One. doi:10.1371/journal.pone.0046795.s011

    Google Scholar 

  • Galamba N (2012) Mapping structural perturbations of water in ionic solutions. J Phys Chem B 116:5242–5250

    Article  PubMed  CAS  Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714

    Article  PubMed  CAS  Google Scholar 

  • Greenway H, Osmond C (1972) Salt responses of enzymes from species differing in salt tolerance. Plant Physiol 49:256–259

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hafsi C, Romero-Puertas MC, Río LA, Sandalio AC (2010) Differential antioxidative response in barley leaves subjected to the interactive effects of salinity and potassium deprivation. Plant Soil 334:449–460

    Article  CAS  Google Scholar 

  • Hedrich R, Schroeder JI (1989) The physiology of ion channels and electrogenic pumps in higher plants. Annu Rev of Plant Physiol Plant Mol Biol 40:539–569

    Article  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    Article  PubMed  CAS  Google Scholar 

  • Hernandez JA, Olmos E, Corpas FJ, Sevilla F, del Rio LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167

    Article  CAS  Google Scholar 

  • Immeln D, Schlesinger R, Heberle J, Kottke T (2007) Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. J Biol Chem 282:21720–21728

    Article  PubMed  CAS  Google Scholar 

  • Jacoby RP, Taylor NL, Millar AH (2011) The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci 16:614–623

    Article  PubMed  CAS  Google Scholar 

  • Jin SH, Huang JQ, Li XQ, Zheng BS, Wu JS, Wang ZJ, Liu GH, Chen M (2011) Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Carya cathayensis. Tree Physiol 31:1142–1151

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Shimazaki KI (1999) Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J 18:5548–5558

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kreimer G, Melkonian M, Holtum J, Latzko E (1985) Characterization of calcium fluxes across the envelope of intact spinach chloroplasts. Planta 166:515–523

    Article  PubMed  CAS  Google Scholar 

  • Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB (2000) A shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12:837–851

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lam E, del Pozo O (2000) Caspase-like protease involvement in the control of plant cell death. Plant Mol Biol 44:417–428

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Sharp RE (1993) Involvement of abscisic acid in controlling plant growth in soil of low water potential. Aust J Plant Physiol 20:425

    Article  CAS  Google Scholar 

  • Ng C, Mcainsh MR, Gray JE et al (2001) Calcium-based signaling systems in guard cells. New Phytol 151:109–120

    Article  CAS  Google Scholar 

  • Nitsos RE, Evans HJ (1969) Effects of univalent cations on the activity of particulate starch synthetase. Plant Physiol 44:1260–1266

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850

    Article  PubMed  CAS  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev of Plant Physiol Plant Mol Biol 52:817–845

    Article  CAS  Google Scholar 

  • Quail PH (2002) Photosensory perception and signaling in plant cells: new paradigms? Curr Opin Cell Biol 14:180–188

    Article  PubMed  CAS  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32:237–249

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo-Moreno A, Andres-Colas N, Poschenrieder C, Gunse B, Penarrubia L, Shabala S (2012) Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: linking copper transport with cytosolic hydroxyl radical production. Plant Cell Environ 36:844–855

    Article  PubMed  Google Scholar 

  • Sanmartín-Suárez C, Soto-Otero R, Sánchez-Sellero I, Méndez-Álvarez E (2011) Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants. J Pharmacol Toxicol Methods 63:209–215

    Article  PubMed  Google Scholar 

  • Shabala S (2000) Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant Cell Environ 23:825–837

    Article  CAS  Google Scholar 

  • Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot 60:709–712

    Article  PubMed  CAS  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    Article  PubMed  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiologia Plantarum 133:651–669

  • Shabala S, Munns R (2012) Salinity stress: physiological constraints and adaptive mechanisms. In: Shabala S (ed) Plant stress physiology. GABI, Oxfordshire, pp 59–93

    Chapter  Google Scholar 

  • Shabala S, Newman IA (1999) Light-induced changes in hydrogen, calcium, potassium, and chloride ion fluxes and concentrations from the mesophyll and epidermal tissues of bean leaves. Understanding the ionic basis of light-induced bioelectrogenesis. Plant Physiol 119:1115–1124

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shabala L, Shabala S, Ross T, McMeekin T (2001) Membrane transport activity and ultradian ion flux oscillations associated with cell cycle of Thraustochytrium sp. Aust J Plant Physiol 28:87–99

    CAS  Google Scholar 

  • Shabala S, Demidchik V, Shabala L, Cuin TA, Smith J, Miller AJ, Davies J, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shabala S, Cuin TA, Prismall L, Nemchinov LG (2007) Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227:189–197

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Shabala S, Cuin TA, Pang J, Percey WJ, Chen Z, Conn S, Elng C, Eegner LH (2010) Xylem ionic relations and salinity tolerance in barley. Plant J 61:839–853

    Article  PubMed  CAS  Google Scholar 

  • Shacklock PS, Read ND, Trewavas AJ (1992) Cytosolic free calcium mediates red light-induced photomorphogenesis. Nature 358:753–755

    Article  CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shimazaki K-I, Kinoshita T, Nishimura M (1992) Involvement of calmodulin and calmodulin-dependent myosin light chain kinase in blue light-dependent H+ pumping by guard cell protoplasts from Vicia faba L. Plant Physiol 99:1416–1421

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sirault XRR, James RA, Furbank RT (2009) A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Funct Plant Biol 36:970

    Article  CAS  Google Scholar 

  • Speer M, Kaiser WM (1991) Ion relations of symplastic and apoplastic space in leaves from Spinacia leracea L. and Pisum sativum L. under salinity. Plant Physiol 97:990–997

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Spetea C, Schoefs B (2010) Solute transporters in plant thylakoid membranes: key players during photosynthesis and light stress. Commun Integr Biol 3:122–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Spitzer JJ, Poolman B (2005) Electrochemical structure of the crowded cytoplasm. TIBS 30:536–541

    PubMed  CAS  Google Scholar 

  • Staal M, Elzenga JTM, Van Elk AG, Prins HBA, Van Volkenburgh E (1994) Red and blue light-stimulated proton efflux by epidermal leaf cells of the Argenteum mutant of Pisum sativum. J Exp Bot 45:1213–1218

    Article  CAS  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2011) ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  PubMed  Google Scholar 

  • Sze H, Li X, Palmgren M (1999) Energization of plant cell membranes by H+ -pumping ATPases regulation and biosynthesis. Plant Cell 11:677–690

    PubMed  CAS  PubMed Central  Google Scholar 

  • Van Volkenburgh EV (1999) Leaf expansion—an integrating plant behavior. Plant Cell Environ 22:1463–1473

    Article  Google Scholar 

  • Véry AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Physiol Plant Mol Biol 54:575–603

    Article  Google Scholar 

  • Viitanen PV, Lubben TH, Reed J, Goloubinoff P, O’Keefe DP, Lorimer GH (1990) Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent. Biochemistry 29:5665–5671

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Shabala L, Barry K, Zhou M, Shabala S (2013) Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. Physiol Plant. doi:10.1111/ppl.12056

    Google Scholar 

  • Yang Y, Zhang F, Zhao M, An L, Zhang L, Chen N (2007) Properties of plasma membrane H+-ATPase in salt-treated Populus euphratica callus. Plant Cell Rep 26:229–235

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Takemiya A, Kinoshita T, Shimazaki KI (2007) Nitric oxide inhibits blue light-specific stomatal opening via abscisic acid signaling pathways in Vicia guard cells. Plant Cell Physiol 48:715–723

    Article  PubMed  CAS  Google Scholar 

  • Živanović BD, Pang J, Shabala S (2005) Light-induced transient ion flux responses from maize leaves and their association with leaf growth and photosynthesis. Plant Cell Environ 28:340–352

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council grant DP0987402 to SS and RMJ and Grain Research and Development Corporation (GRDC) grant to SS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Shabala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2014_2117_MOESM1_ESM.pptx

Suppl. Fig. S1 a Relationship between net H+ efflux and net K+ flux measured from leaf mesophyll from 15 min after treatment with 100 mM NaCl (a) and 20 mM NaCl (b). One (of six) representative examples is shown for each treatmentSuppl. Fig. S2 Rhythmical net H+ flux response to light/dark fluctuation measured from mesophyll tissues exposed to a range of salinities for 72 h. One (of 6-8) typical examples is shownSuppl. Fig. S3 Rhythmical net K+ flux response to light/dark fluctuation measured from mesophyll tissues exposed to a range of salinities for 72 h. One (of 6-8) typical examples is shown (PPTX 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Percey, W.J., Shabala, L., Breadmore, M.C. et al. Ion transport in broad bean leaf mesophyll under saline conditions. Planta 240, 729–743 (2014). https://doi.org/10.1007/s00425-014-2117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2117-z

Keywords

Navigation