Skip to main content
Log in

Temporal dynamics of the circadian heart rate following low and high volume exercise training in sedentary male subjects

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Increased risk of arrhythmic events occurs at certain times during the circadian cycle with the highest risk being in the second and fourth quarter of the day. Exercise improves treatment outcome in individuals with cardiovascular disease. How different exercise protocols affect the circadian rhythm and the associated decrease in adverse cardiovascular risk over the circadian cycle has not been shown.

Methods

Fifty sedentary male participants were randomized into an 8-week high volume and moderate volume training and a control group. Heart rate was recorded using Polar Electronics and investigated with Cosinor analysis and by Poincaré plot derived features of SD1, SD2 and the complex correlation measure (CCM) at 1-h intervals over the 24-h period.

Results

Moderate exercise significantly increased vagal modulation and the temporal dynamics of the heart rate in the second quarter of the circadian cycle (p = 0.004 and p = 0.007 respectively). High volume exercise had a similar effect on vagal output (p = 0.003) and temporal dynamics (p = 0.003). Cosinor analysis confirms that the circadian heart rate displays a shift in the acrophage following moderate and high volume exercise from before waking (1st quarter) to after waking (2nd quarter of day).

Conclusions

Our results suggest that exercise shifts vagal influence and increases temporal dynamics of the heart rate to the 2nd quarter of the day and suggest that this may be the underlying physiological change leading to a decrease in adverse arrhythmic events during this otherwise high-risk period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AC:

Acrophase

AMI:

Acute myocardial infarct

Amp:

Amplitude

ANS:

Autonomic nervous system

CCM:

Complex correlation measure

HRmax :

Maximum heart rate

HRV:

Heart rate variability

MESOR:

Midline-estimating statistic of rhythm

RQmax :

Maximum respiratory quotient

R-R:

Peaks between the QRS waves (RR interval)

SCD:

Sudden cardiac death

SD1:

Width of the Poincaré plot

SD2:

Length of the Poincaré plot

VO2peak :

Highest value of O2 consumption

References

  • Achten J, Jeukendrup AE (2003) Heart rate monitoring: applications and limitations. Sports Med 33:517–538

    Article  PubMed  Google Scholar 

  • Amano M, Kanda T, Ue H, Moritani T (2001) Exercise training and autonomic nervous system activity in obese individuals. Med Sci Sports Exerc 33:1287–1291

    Article  CAS  PubMed  Google Scholar 

  • Boudreau P, Yeh WH, Dumont GA, Boivin DB (2012) A circadian rhythm in heart rate variability contributes to the increased cardiac sympathovagal response to awakening in the morning. Chronobiol Int 29:757–768

    Article  PubMed  Google Scholar 

  • Brennan M, Palaniswami M, Kamen P (2001) Do existing methods of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 48:1342–1347

    Article  CAS  PubMed  Google Scholar 

  • Brennan M, Palaniswami M, Kamen P (2002) Poincare plot interpretation using a physiological model of HRV based on a network of oscillators 2. Am J Physiol Heart Circ Physio 283:H1873–H1886

    Article  CAS  Google Scholar 

  • Buchheit M, Gindre C (2006) Cardiac parasympathetic regulation: respective associations with cardiorespiratory fitness and training load. Am J Physiol Heart Circ Physiol 291:H451–H458

    Article  CAS  PubMed  Google Scholar 

  • Buchheit M, Simon C, Piquard F, Ehrhart J, Brandenberger G (2004) Effects of increased training load on vagal-related indexes of heart rate variability: a novel sleep approach. Am J Physiol Heart Circ Physiol 287:H2813–H2818

    Article  CAS  PubMed  Google Scholar 

  • Carter JB, Banister EW, Blaber AP (2003) Effect of endurance exercise on autonomic control of heart rate. Sports Med 33:33–46

    Article  PubMed  Google Scholar 

  • Cottin F, Medigue C, Lepretre PM, Papelier Y, Koralsztein JP, Billat V (2004) Heart rate variability during exercise performed below and above ventilatory threshold. Med Sci Sports Exerc 36:594–600

    Article  PubMed  Google Scholar 

  • Fernández JR, Hermida RC, Mojón A (2009) Chronobiological analysis techniques. Application to blood pressure. Phil Trans R Soc A 367:431–445

    Article  PubMed  Google Scholar 

  • Furlan R, Guzzetti S, Crivellaro W, Dassii S, Tinelli M, Baseli G, Ceruti S, Lomardi F, Pagani M, Malliani A (1990) Continuous 24-h assessment of the neural regulation of systemic arterial pressure and and RR variabilities in ambulant subjects. Circulation 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Goldberger JJ, Le FK, Lahiri M, Kannankeril PJ, Ng J, Kadish AH (2006) Assessment of parasympathetic reactivation after exercise. Am J Physiol Heart Circ Physiol 290:H2446–H2452

    Article  CAS  PubMed  Google Scholar 

  • Guo Y-F, Stein PK (2003) Circadian rhythm in the cardiovascular system: chronocardiology. Am Heart J 145:779–786

    Article  PubMed  Google Scholar 

  • Halberg F (1969) Chronobiology. Ann Rev Physiol 1:675–725

    Article  Google Scholar 

  • Halberg F, Johnson EA, Nelson W, Runge W, Sothern R (1973) Autorhythmometry procedures for physiologic self-measurements and their analysis. Physiol Teach 1:1–11

    Google Scholar 

  • Hautala AJ, Mäkikallio TH, Kiviniemi A, Laukkanen RT, Nissilä S, Huikuri HV, Tulppo MP (2003) Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary subjects. Am J Physiol Heart Circ Physiol 285:H1747–H1752

    Article  CAS  PubMed  Google Scholar 

  • Hautala AJ, Mäkikallio TH, Kiviniemi A, Laukkanen RT, Nissilä S, Huikuri HV, Tulppo MP (2004) Heart rate dynamics after controlled training followed by home-based exercise program. Eur J Appl Physiol 92:289–297

    Article  PubMed  Google Scholar 

  • Hu K, Ivanov PC, Hilton MF, Chen Z, Ayers RT, Stanley HE, Shea SA (2004) Endogenous circadian rhythm in an index of cardiac vulnerability independent of changes in behavior. Proc Nat Acad Sci USA 101:18223–18227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huikuri HV, Kessler KM, Terracall E, Castellanos A, Linnaluoto MK, Myerburg RJ (1990) Reproducibility and circadian rhythm of heart rate variability in healthy subjects. Am J Cardiol 65:391–393

    Article  CAS  PubMed  Google Scholar 

  • Huikuri HV, Linnaluoto MK, Seppanen T, Airaksinen KE, Kessler KM, Takkunen JT, Myerburg RJ (1992) Circadian rhythm of heart rate variability in survivors of cardiac arrest. Am J Cardiol 70:610–615

    Article  CAS  PubMed  Google Scholar 

  • Jeyaraj D, Haldar SM, Wan X, McCauley MD, Ripperger J, Hu K, Lu Y, Eapen BL, Sharma N, Ficker E, Cutler MJ, Gulick J, Sanbe A, Robbins J, Demolombe S, Kondratov RV, Shea SA, Albrecht U, Wehrens XHT, Rosenbaum DS, Jain MK (2012) Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature 483:96–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamen PW, Krum H, Tonkin AM (1996) Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin Sci 91:201–208

    Article  CAS  PubMed  Google Scholar 

  • Karasik R, Sapir N, Adshkenazy Y, Ivanov PC, Dvir I, Lavie P, Havlin S (2002) Corrrelation differences in heartbeat fluctuations during rest and exercise. Phys Rev E 66:062902

    Article  Google Scholar 

  • Karmakar CK, Khandoker A, Gubbi J, Palaniswami M (2009) Complex correlation measure: a novel desciptor for Poincaré plot. Biomed Eng Online 8: http://www.biomedical-engineering-online.com/content/8/1/17

  • Karmakar C, Khandoker A, Voss A, Palaniswami M (2011) Sensitivity of temporal heart rate variability in Poincare plot to changes in parasympathetic nervous system activity. Biomed Eng Online 10:17

    Article  PubMed Central  PubMed  Google Scholar 

  • Khandoker AH, Jelinek HF, Moritani T, Palaniswami M (2010) Association of cardiac autonomic neuropathy with alteration of sympatho-vagal balance through heart rate variability analysis. Med Eng Phys 32:161–167

    Article  PubMed  Google Scholar 

  • Kishida H, Suzuki T, Saito T, Kiuchi K, Yasutake H, Tanaka K, Hata N, Fukuma N (1989) Clinical significance and management of silent myocardial ischemia in patients with angina pectoris and myocardial infarction. Jpn Circ J 53:1444–1451

    Article  CAS  PubMed  Google Scholar 

  • Lauer MS, Okin PM, Larson MG, Evans JC, Levy D (1996) Impaired heart rate response to graded exercise: Prognostic implications of chronotropic incompetence in the Framingham Heart Study. Circulation 93:1520–1526

    Article  CAS  PubMed  Google Scholar 

  • Lecarpentier Y, Claes V, Hebert JL (2010) PPARs, cardiovascular metabolism, and function: near- or far-from-equilibrium pathways. PPAR Res. doi:10.1155/2010/783273

  • Mäkikallio TH, Barthel P, Schneider R, Bauer A, Tapanainen JM, Tulppo MP, Perkiomaki JS, Schmidt G, Huikuri HV (2006) Frequency of sudden cardiac death among acute myocardial infarction survivors with optimized medical and revascularization therapy. Am J Cardiol 97:480–484

    Article  PubMed  Google Scholar 

  • Malfatto G, Facchini M, Bragato R, Branzi G, Sala L, Leonetti G (1996) Short and long term effects of exercise training on the tonic autonomic modulation of heart rate variability after myocardial infarction. Eur Heart J 17:532

    Article  CAS  PubMed  Google Scholar 

  • Maury E, Ramsey KM, Bass J (2010) Circadian rhythms and metabolic syndrome: From experimental genetics to human disease. Circ Res 106:447–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitler MM, Hajdukovic RM, Shafor R, Hahn PM, Kripke DF (1987) When people die: Cause of death versus time of death. Am J Med 82:266–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakagawa M, Iwao T, Ishida S, Yonemochi H, Fujino T, Saikawa T, Ito M (1998) Circadian rhythm of the signal averaged electrocardiogram and its relation to heart rate variability in healthy subjects. Heart 79:493–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Otsuka K, Cornélissen G, Halberg F (1997) Circadian rhythmic fractal scaling of heart rate variability in health and coronary artery disease. Clin Cardiol 20:631–638

    Article  CAS  PubMed  Google Scholar 

  • Piepoli MF, Capucci A (2007) Autonomic nervous system in the genesis of arrhythmias in chronic heart failure: implication for risk stratification. Min Cardioangiol 55:325–333

    CAS  Google Scholar 

  • Qtsuka K, Cornélissen G, Halberg F (1997) Circadian rhythmic fractal scaling of heart rate variability in health and coronary artery disease. Clin Cardiol 20:631–638

    Article  Google Scholar 

  • Ranpuria R, Hall M, Chan CT, Unruh M (2008) Heart rate variability (HRV) in kidney failure: measurement and consequences of reduced HRV. Nephrol Dial Transplant 23:444–449

    Article  PubMed  Google Scholar 

  • Rennie KL, Hemingway H, Kumari M, Brunner E, Malik M, Marmot M (2003) Effects of moderate and vigorous physical activity on heart rate variability in a British study of civil servants. Am J Epidemiol 158:135–143

    Article  PubMed  Google Scholar 

  • Scheer FAJL, Hu K, Evoniuk H, Kelly EE, Malhotra A, Hilton MF, Shea SA (2010) Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Nat Acad Sci USA. doi:10.1073/pnas.1006749107

    PubMed Central  PubMed  Google Scholar 

  • Shanmugam V, Wafi A, Al-Taweel N, Büsselberg D (2013) Disruption of circadian rhythm increases the risk of cancer, metabolic syndrome and cardiovascular disease. J Local Global Health Sci. doi:10.5339/jlghs.2013.5333

    Google Scholar 

  • Shaw E, Tofler GH (2009) Circadian rhythm and cardiovascular disease. Current Atheroscler Rep 11:289–295

    Article  Google Scholar 

  • Shea SA, Hilton MF, Hu K, Scheer FAJL (2011) Existence of an endogenous circadian blood pressure rhythm in humans that peaks in the evening Circ Res supplementary data 108(8):980–984. doi:10.1161/CIRCRESAHA.110.233668

  • Singh RB, Kartik C, Otsuka K, Pella D, Pella J (2002) Brain-heart connection and the risk of heart attack. Biomed Pharmacother 56:257s–265s

    Article  PubMed  Google Scholar 

  • Singh RB, Cornélissen G, Weydahl A, Schwartzkopff O, Katinas G, Otsuka K, Watanabe Y, Yano S, Mori H, Ichimaru Y, Mitsutake G, Pella D, Fanghong L, Zhao Z, Rao RS, Gvozdjakova A, Halberg F (2003) Circadian heart rate and blood pressure variability considered for research and patient care. Int J Cardiol 87:9–28

    Article  PubMed  Google Scholar 

  • Soares-Miranda L, Sandercock G, Valente H, Vale S, Santos R, Mota J (2009) Vigorous physical activity and vagal modulation in young adults. Eur J Cardiovasc Prevent Rehab 16:705–711

    Article  Google Scholar 

  • Stanley J, Peake JM, Buchheit M (2013) Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med 43:1259–1277

    Article  PubMed  Google Scholar 

  • Su Y, Liu XM, Sun YM, Jin HB, Fu R, Wang YY, Wu Y, Luan Y (2008) The relationship between endothelial dysfunction and oxidative stress in diabetes and prediabetes. Int J Clin Pract 62:877–882

    Article  CAS  PubMed  Google Scholar 

  • Thayer JF, Yamamoto SS, Brosschot JF (2010) The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol 141:122–131

    Article  PubMed  Google Scholar 

  • Tsuji H, Larson MG, Venditti FJ, Manders ES, Evans JC, Feldman CL, Levy D (1996) Impact of reduced heart rate variability on risk for cardiac Events: The Framingham Heart Study. Circulation 94:2850–2855

    Article  CAS  PubMed  Google Scholar 

  • Tulppo MP, Mäkikallio TH, Takala TES, Seppänen T (1996) Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol Heart Circ Physiol 271:H244–H252

    CAS  Google Scholar 

  • Tulppo MP, Hautala AJ, Mäkikallio TH, Laukkanen RT, Nissilä S, Hughson RL, Huikuri HV (2003) Effects of aerobic training on heart rate dynamics in sedentary subjects. J Appl Physiol 95:364–372

    Article  PubMed  Google Scholar 

  • Van Leeuwen P, Bettennann H, An der Heiden U, Kummell HC (1995) Circadian aspects of apparent correlation dimension in human heart rate dynamics. Am J Physiol Heart Circ Physiol 269:H130–H134

    Google Scholar 

  • Viskin S, Golovner M, Malov N, Fish R, Alroy I, Vila Y, Laniado S, Kaplinsky E, Roth A (1999) Circadian variation of symptomatic paroxysmal atrial fibrillation. Data from almost 10000 episodes. Eur Heart J 20:1429–1434

    Article  CAS  PubMed  Google Scholar 

  • Weydahl A, Cornelissen G, Halberg F, Siegelova J, Kumagai Y, Otsuka K (1998) Chronobiologic optimization of exercise physiology and practice guided by heart rate variability. Scripta Medica (Brno) 71:215–230

    Google Scholar 

  • Willich SN, Levy D, Rocco MB, Tofler GH, Stone PH, Muller JE (1987) Circadian variation in the incidence of sudden cardiac death in the Framingham heart study population. Am J Cardiol 60:801–806

    Article  CAS  PubMed  Google Scholar 

  • Willich SN, Goldberg RJ, Maclure M, Perriello L, Muller JE (1992) Increased onset of sudden cardiac death in the first three hours after awakening. Am J Cardiol 70:65–68

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zhang P, Cheng Z, Hao W, Wang R, Fang Q, Cao JM (2011) Altered circadian rhythm of cardiac beta3-adrenoceptor activity following myocardial infarction in the rat. Basic Res Cardiol 106:37–50

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert F. Jelinek.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jelinek, H.F., Karmakar, C., Kiviniemi, A.M. et al. Temporal dynamics of the circadian heart rate following low and high volume exercise training in sedentary male subjects. Eur J Appl Physiol 115, 2069–2080 (2015). https://doi.org/10.1007/s00421-015-3185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3185-x

Keywords

Navigation