Skip to main content

Advertisement

Log in

Acute resistance exercise increases the expression of chemotactic factors within skeletal muscle

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Introduction

Intense resistance exercise causes mechanical loading of skeletal muscle, followed by muscle adaptation. Chemotactic factors likely play an important role in these processes.

Purpose

We investigated the time course of changes in the expression and tissue localization of several key chemotactic factors in skeletal muscle during the early phase of recovery following resistance exercise.

Methods

Muscle biopsy samples were obtained from vastus lateralis of eight untrained men (22 ± 0.5 years) before and 2, 4 and 24 h after three sets of leg press, squat and leg extension at 80 % 1-RM.

Results

Monocyte chemotactic protein-1 (95×), interleukin-8 (2,300×), IL-6 (317×), urokinase-type plasminogen activator (15×), vascular endothelial growth factor (2×) and fractalkine (2.5×) mRNA was significantly elevated 2 h post-exercise. Interleukin-8 (38×) and interleukin-6 (58×) protein was also significantly elevated 2 h post-exercise, while monocyte chemotactic protein-1 protein was significantly elevated at 2 h (22×) and 4 h (21×) post-exercise. Monocyte chemotactic protein-1 and interleukin-8 were expressed by cells residing in the interstitial space between muscle fibers and, in some cases, were co-localized with CD68 + macrophages, PAX7 + satellite cells and blood vessels. However, the patterns of staining were inconclusive and not consistent.

Conclusion

In conclusion, resistance exercise stimulated a marked increase in the mRNA and protein expression of various chemotactic factors in skeletal muscle. Myofibers were not the dominant source of these factors. These findings suggest that chemotactic factors regulate remodeling/adaptation of skeletal muscle during the early phase of recovery following resistance exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

FKN:

Fractalkine

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

IL-6:

Interleukin-6

IL-8:

Interleukin-8

MDC:

Macrophage-derived chemokine

MCP-1:

Monocyte chemotactic protein-1

RM:

Repetition maximum

RT-PCR:

Reverse transcription polymerase chain reaction

TNF-α:

Tumor necrosis factor-α

uPA:

Urokinase-type plasminogen activator

VEGF:

Vascular endothelial growth factor

References

  • Anderson P (2008) Post-transcriptional control of cytokine production. Nat Immunol 9(4):353–359

    Article  PubMed  CAS  Google Scholar 

  • Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204(5):1057–1069

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beaton LJ, Tarnopolsky MA, Phillips SM (2002) Contraction-induced muscle damage in humans following calcium channel blocker administration. J Physiol 544(Pt 3):849–859

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bryer SC, Fantuzzi G, Van Rooijen N, Koh TJ (2008) Urokinase-type plasminogen activator plays essential roles in macrophage chemotaxis and skeletal muscle regeneration. J Immunol 180(2):1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Buford TW, Cooke MB, Willoughby DS (2009) Resistance exercise-induced changes of inflammatory gene expression within human skeletal muscle. Eur J Appl Physiol 107(4):463–471

    Article  PubMed  CAS  Google Scholar 

  • Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238

    Article  PubMed  CAS  Google Scholar 

  • Chazaud B, Sonnet C, Lafuste P, Bassez G, Rimaniol AC, Poron F, Authier FJ, Dreyfus PA, Gherardi RK (2003) Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol 163(5):1133–1143

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen SE, Gerken E, Zhang Y, Zhan M, Mohan RK, Li AS, Reid MB, Li YP (2005) Role of TNF-α signaling in regeneration of cardiotoxin-injured muscle. Am J Physiol Cell Physiol 289(5):C1179–C1187

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen SE, Jin B, Li YP (2007) TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Physiol Cell Physiol 292(5):C1660–C1671

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen TC, Chen HL, Pearce AJ, Nosaka K (2012) Attenuation of eccentric exercise-induced muscle damage by preconditioning exercises. Med Sci Sports Exerc 44(11):2090–2098

    Article  PubMed  Google Scholar 

  • De Paepe B, Creus KK, De Bleecker JL (2007) Chemokine profile of different inflammatory myopathies reflects humoral versus cytotoxic immune responses. Ann N Y Acad Sci 1109:441–453

    Article  PubMed  Google Scholar 

  • De Rossi M, Bernasconi P, Baggi F, de Waal Malefyt R, Mantegazza R (2000) Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation. Int Immunol 12(9):1329–1335

    Article  PubMed  Google Scholar 

  • Hubal MJ, Chen TC, Thompson PD, Clarkson PM (2008) Inflammatory gene changes associated with the repeated-bout effect. Am J Physiol Regul Integr Comp Physiol 294(5):R1628–R1637

    Article  PubMed  CAS  Google Scholar 

  • Hyldahl RD, Xin L, Hubal MJ, Moeckel-Cole S, Chipkin S, Clarkson PM (2011) Activation of nuclear factor-kappaB following muscle eccentric contractions in humans is localized primarily to skeletal muscle-residing pericytes. Faseb J 25(9):2956–2966

    Article  PubMed  CAS  Google Scholar 

  • Kendall B, Eston R (2002) Exercise-induced muscle damage and the potential protective role of estrogen. Sports Med 32(2):103–123

    Article  PubMed  Google Scholar 

  • Kurek JB, Bower JJ, Romanella M, Koentgen F, Murphy M, Austin L (1997) The role of leukemia inhibitory factor in skeletal muscle regeneration. Muscle Nerve 20(7):815–822

    Article  PubMed  CAS  Google Scholar 

  • Louis E, Raue U, Yang Y, Jemiolo B, Trappe S (2007) Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol 103(5):1744–1751

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Huang D, Ransohoff RM, Zhou L (2011a) Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair. Faseb J 25(10):3344–3355

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L (2011b) Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. Faseb J 25(1):358–369

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Malm C, Yu JG (2012) Exercise-induced muscle damage and inflammation: re-evaluation by proteomics. Histochem Cell Biol in press

  • Marino M, Scuderi F, Provenzano C, Scheller J, Rose-John S, Bartoccioni E (2008) IL-6 regulates MCP-1, ICAM-1 and IL-6 expression in human myoblasts. J Neuroimmunol 196(1–2):41–48

    Article  PubMed  CAS  Google Scholar 

  • McKay BR, De Lisio M, Johnston AP, O’Reilly CE, Phillips SM, Tarnopolsky MA, Parise G (2009) Association of interleukin-6 signalling with the muscle stem cell response following muscle-lengthening contractions in humans. PLoS One 4(6):e6027

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore DR, Phillips SM, Babraj JA, Smith K, Rennie MJ (2005) Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. Am J Physiol Endocrinol Metab 288(6):E1153–E1159

    Article  PubMed  CAS  Google Scholar 

  • Nedachi T, Hatakeyama H, Kono T, Sato M, Kanzaki M (2009) Characterization of contraction-inducible CXC chemokines and their roles in C2C12 myocytes. Am J Physiol Endocrinol Metab 297:E866–E878

    Article  PubMed  CAS  Google Scholar 

  • Nieman DC, Davis JM, Brown VA, Henson DA, Dumke CL, Utter AC, Vinci DM, Downs MF, Smith JC, Carson J, Brown A, McAnulty SR, McAnulty LS (2004) Influence of carbohydrate ingestion on immune changes after 2 h of intensive resistance training. J Appl Physiol 96(4):1292–1298

    Article  PubMed  CAS  Google Scholar 

  • Paulsen G, Crameri R, Benestad HB, Fjeld JG, Morkrid L, Hallen J, Raastad T (2010) Time course of leukocyte accumulation in human muscle after eccentric exercise. Med Sci Sports Exerc 42(1):75–85

    Article  PubMed  Google Scholar 

  • Peterson JM, Pizza FX (2009) Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro. J Appl Physiol 106(1):130–137

    Article  PubMed  CAS  Google Scholar 

  • Peterson JM, Feeback KD, Baas JH, Pizza FX (2006) Tumor necrosis factor-α promotes the accumulation of neutrophils and macrophages in skeletal muscle. J Appl Physiol 101(5):1394–1399

    Article  PubMed  CAS  Google Scholar 

  • Petreaca ML, Yao M, Liu Y, Defea K, Martins-Green M (2007) Transactivation of vascular endothelial growth factor receptor-2 by interleukin-8 (IL-8/CXCL8) is required for IL-8/CXCL8-induced endothelial permeability. Mol Biol Cell 18(12):5014–5023

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Psilander N, Damsgaard R, Pilegaard H (2003) Resistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle. J Appl Physiol 95(3):1038–1044

    PubMed  CAS  Google Scholar 

  • Selzman CH, Miller SA, Zimmerman MA, Gamboni-Robertson F, Harken AH, Banerjee A (2002) Monocyte chemotactic protein-1 directly induces human vascular smooth muscle proliferation. Am J Physiol Heart Circ Physiol 283(4):H1455–H1461

    PubMed  CAS  Google Scholar 

  • Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7(1):33–44

    Article  PubMed  CAS  Google Scholar 

  • Shireman PK, Contreras-Shannon V, Ochoa O, Karia BP, Michalek JE, McManus LM (2007) MCP-1 deficiency causes altered inflammation with impaired skeletal muscle regeneration. J Leukoc Biol 81(3):775–785

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T, Kawaguchi Y, Harigai M, Takagi K, Ohta S, Fukasawa C, Hara M, Kamatani N (2000) Increased CD40 expression on muscle cells of polymyositis and dermatomyositis: role of CD40-CD40 ligand interaction in IL-6, IL-8, IL-15, and monocyte chemoattractant protein-1 production. J Immunol 164(12):6593–6600

    Article  PubMed  CAS  Google Scholar 

  • Tidball JG, Wehling-Henricks M (2007) Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol 578(Pt 1):327–336

    PubMed  CAS  PubMed Central  Google Scholar 

  • Toth KG, McKay BR, De Lisio M, Little JP, Tarnopolsky MA, Parise G (2011) IL-6 induced STAT3 signalling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLoS One 6(3):e17392

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Trenerry MK, Carey KA, Ward AC, Cameron-Smith D (2007) STAT3 signaling is activated in human skeletal muscle following acute resistance exercise. J Appl Physiol 102(4):1483–1489

    Article  PubMed  CAS  Google Scholar 

  • Vella LD, Caldow MK, Larsen AE, Tassoni DM, Della-Gatta PA, Gran P, Russell AP, Cameron-Smith D (2011) Resistance exercise increases nuclear factor-kappa B activity in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 302:R667–R673

    Article  PubMed  Google Scholar 

  • Volin MV, Woods JM, Amin MA, Connors MA, Harlow LA, Koch AE (2001) Fractalkine: a novel angiogenic chemokine in rheumatoid arthritis. Am J Pathol 159(4):1521–1530

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Warren GL, Hulderman T, Jensen N, McKinstry M, Mishra M, Luster MI, Simeonova PP (2002) Physiological role of tumor necrosis factor α in traumatic muscle injury. FASEB J 16(12):1630–1632

    PubMed  CAS  Google Scholar 

  • Warren GL, O’Farrell L, Summan M, Hulderman T, Mishra D, Luster MI, Kuziel WA, Simeonova PP (2004) Role of CC chemokines in skeletal muscle functional restoration after injury. Am J Physiol Cell Physiol 286(5):C1031–C1036

    Article  PubMed  CAS  Google Scholar 

  • Warren GL, Hulderman T, Mishra D, Gao X, Millecchia L, O’Farrell L, Kuziel WA, Simeonova PP (2005) Chemokine receptor CCR2 involvement in skeletal muscle regeneration. Faseb J 19(3):413–415

    PubMed  CAS  Google Scholar 

  • Weber KS, Nelson PJ, Grone HJ, Weber C (1999) Expression of CCR2 by endothelial cells : implications for MCP-1 mediated wound injury repair and In vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol 19(9):2085–2093

    Article  PubMed  CAS  Google Scholar 

  • Yahiaoui L, Gvozdic D, Danialou G, Mack M, Petrof BJ (2008) CC family chemokines directly regulate myoblast responses to skeletal muscle injury. J Physiol 586(16):3991–4004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Andrew Garnham (Deakin University) for all muscle biopsy procedures and the participants for volunteering. The PAX7 (developed by Atsushi Kawakami) and Collagen IV (M3F7, developed by Dr. Heinz Furthmayr) primary antibodies were obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA 52242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Peake.

Additional information

Communicated by Martin Flueck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Gatta, P.A., Cameron-Smith, D. & Peake, J.M. Acute resistance exercise increases the expression of chemotactic factors within skeletal muscle. Eur J Appl Physiol 114, 2157–2167 (2014). https://doi.org/10.1007/s00421-014-2936-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2936-4

Keywords

Navigation