Skip to main content

Advertisement

Log in

Androgenic and estrogenic regulation of Atrogin-1, MuRF1 and myostatin expression in different muscle types of male mice

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The molecular factors targeted by androgens and estrogens on muscle mass are not fully understood. The current study aimed to explore gene and protein expression of Atrogin-1, MuRF1, and myostatin in an androgen deprivation-induced muscle atrophy model.

Methods

We examined the effects of Orx either with or without testosterone (T) or estradiol (E2) administration on Atrogin-1 gene expression, and MuRF1 and myostatin gene and protein expression. Measurements were made in soleus (SOL), extensor digitorum longus (EDL) and levator ani/bulbocavernosus (LA/BC) of male C57BL/6 mice.

Results

Thirty days of Orx resulted in a reduction in weight gain and muscle mass. These effects were prevented by T. In LA/BC, Atrogin-1 and MuRF1 mRNA was increased throughout 30 days of Orx, which was fully reversed by T and partially by E2 administration. In EDL and SOL, a less pronounced upregulation of both genes was only detectable at the early stages of Orx. Myostatin mRNA levels were downregulated in LA/BC and upregulated in EDL following Orx. T, but not E2, reversed these effects. No changes in protein levels of MuRF1 and myostatin were found in EDL at any time point following Orx.

Conclusions

The atrophy in SOL and EDL in response to androgen deprivation, and its restoration by T, is accompanied by only minimal changes in atrogenes and myostatin gene expression. The marked differences in muscle atrophy and atrogene and myostatin mRNA between LA/BC and the locomotor muscles suggest that the murine LA/BC is not an optimal model to study Orx-induced muscle atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahtiainen M, Pollanen E, Ronkainen PH, Alen M, Puolakka J, Kaprio J, Sipila S, Kovanen V (2012) Age and estrogen-based hormone therapy affect systemic and local IL-6 and IGF-1 pathways in women. Age 34:1249–1260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allan CA, Strauss BJ, Burger HG, Forbes EA, McLachlan RI (2008) Testosterone therapy prevents gain in visceral adipose tissue and loss of skeletal muscle in nonobese aging men. J Clin Endocrinol Metab 93:139–146

    Article  CAS  PubMed  Google Scholar 

  • Auyeung TW, Lee JS, Kwok T, Leung J, Ohlsson C, Vandenput L, Leung PC, Woo J (2011) Testosterone but not estradiol level is positively related to muscle strength and physical performance independent of muscle mass: a cross-sectional study in 1489 older men. Eur J Endocrinol 164:811–817

    Article  CAS  PubMed  Google Scholar 

  • Axell AM, MacLean HE, Plant DR, Harcourt LJ, Davis JA, Jimenez M, Handelsman DJ, Lynch GS, Zajac JD (2006) Continuous testosterone administration prevents skeletal muscle atrophy and enhances resistance to fatigue in orchidectomized male mice. Am J Physiol Endocrinol Metab 291:E506–E516

    Article  CAS  PubMed  Google Scholar 

  • Bhasin S, Storer TW, Berman N, Yarasheski KE, Clevenger B, Phillips J, Lee WP, Bunnell TJ, Casaburi R (1997) Testosterone replacement increases fat-free mass and muscle size in hypogonadal men. J Clin Endocrinol Metab 82:407–413

    CAS  PubMed  Google Scholar 

  • Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    Article  CAS  PubMed  Google Scholar 

  • Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang M-L, Trombitas K, Granzier H, Gregorio CC, Sorimachi H, Labeit S (2001) Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 306:717–726

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185:1083–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS (1997) Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology 138:4613–4621

    CAS  PubMed  Google Scholar 

  • Derave W, Eijnde BO, Ramaekers M, Hespel P (2005) Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence. Exp Gerontol 40:562–572

    Article  CAS  PubMed  Google Scholar 

  • Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50:227–230

    Article  CAS  PubMed  Google Scholar 

  • Drummond MJ, Glynn EL, Lujan HL, Dicarlo SE, Rasmussen BB (2008) Gene and protein expression associated with protein synthesis and breakdown in paraplegic skeletal muscle. Muscle Nerve 37:505–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fielitz J, Kim MS, Shelton JM, Latif S, Spencer JA, Glass DJ, Richardson JA, Bassel-Duby R, Olson EN (2007) Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. J Clin Invest 117:2486–2495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foletta VC, White LJ, Larsen AE, Leger B, Russell AP (2011) The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch 461:325–335

    Article  CAS  PubMed  Google Scholar 

  • Glass D, Roubenoff R (2010) Recent advances in the biology and therapy of muscle wasting. Ann NY Acad of Sci 1211:25–36

    Article  Google Scholar 

  • Gold J, Batterham MJ, Rekers H, Harms MK, Geurts TB, Helmyr PM, Silva de Mendonca J, Falleiros Carvalho LH, Panos G, Pinchera A et al (2006) Effects of nandrolone decanoate compared with placebo or testosterone on HIV-associated wasting. HIV Med 7:146–155

    Article  CAS  PubMed  Google Scholar 

  • Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98:14440–14445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haren MT, Siddiqui AM, Armbrecht HJ, Kevorkian RT, Kim MJ, Haas MJ, Mazza A, Kumar VB, Green M, Banks WA et al (2011) Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle. Int J Androl 34:55–68

    Article  CAS  PubMed  Google Scholar 

  • Hart DW, Wolf SE, Ramzy PI, Chinkes DL, Beauford RB, Ferrando AA, Wolfe RR, Herndon DN (2001) Anabolic effects of oxandrolone after severe burn. Ann Surg 233:556–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed Central  PubMed  Google Scholar 

  • Hulmi JJ, Ahtiainen JP, Selanne H, Volek JS, Hakkinen K, Kovanen V, Mero AA (2008) Androgen receptors and testosterone in men—effects of protein ingestion, resistance exercise and fiber type. J Steroid Biochem and Mol Biol 110:130–137

    Article  CAS  Google Scholar 

  • Ibebunjo C, Eash JK, Li C, Ma Q, Glass DJ (2011) Voluntary running, skeletal muscle gene expression, and signaling inversely regulated by Orx and testosterone replacement. Am J Physiol Endocrinol Metab 300:E327–E340

    Article  CAS  PubMed  Google Scholar 

  • Lagirand-Cantaloube J, Offner N, Csibi A, Leibovitch MP, Batonnet-Pichon S, Tintignac LA, Segura CT, Leibovitch SA (2008) The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J 27:1266–1276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee HJ, Chang C (2003) Recent advances in androgen receptor action. Cell Mol Life Sci 60:1613–1622

    Article  CAS  PubMed  Google Scholar 

  • Li HH, Kedar V, Zhang C, McDonough H, Arya R, Wang DZ, Patterson C (2004) Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest 114:1058–1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lokireddy S, Mouly V, Butler-Browne G, Gluckman PD, Sharma M, Kambadur R, McFarlane C (2011) Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins. Am J Physiol Cell Physiol 301:C1316–C1324

    Article  CAS  PubMed  Google Scholar 

  • MacLean HE, Chiu WS, Notini AJ, Axell AM, Davey RA, McManus JF, Ma C, Plant DR, Lynch GS, Zajac JD (2008) Impaired skeletal muscle development and function in male, but not female, genomic androgen receptor knockout mice. FASEB J 22:2676–2689

    Article  CAS  PubMed  Google Scholar 

  • Mauras N, Hayes V, Welch S, Rini A, Helgeson K, Dokler M, Veldhuis JD, Urban RJ (1998) Testosterone deficiency in young men: marked alterations in whole body protein kinetics, strength, and adiposity. J Clin Endocrinol 83:1886–1892

    CAS  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90

    Article  CAS  PubMed  Google Scholar 

  • Mendler L, Baka Z, Kovacs-Simon A, Dux L (2007) Androgens negatively regulate myostatin expression in an androgen-dependent skeletal muscle. Biochem Biophys Res Comm 361:237–242

    Article  CAS  PubMed  Google Scholar 

  • Messier V, Rabasa-Lhoret R, Barbat-Artigas S, Elisha B, Karelis AD, ubertin-Leheudre M (2011) Menopause and sarcopenia: a potential role for sex hormones. Maturitas 68:331–336

    Article  CAS  PubMed  Google Scholar 

  • Ophoff J, Van Proeyen K, Callewaert F, De Gendt K, De Bock K, Vanden Bosch A, Verhoeven G, Hespel P, Vanderschueren D (2009) Androgen signaling in myocytes contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue. Endocrinology 150:3558–3566

    Article  CAS  PubMed  Google Scholar 

  • Pires-Oliveira M, Maragno AL, Parreiras-E-Silva LT, Chiavegatti T, Gomes MD, Godinho RO (2010) Testosterone represses ubiquitin ligases atrogin-1 and Murf-1 expression in an androgen-sensitive rat skeletal muscle in vivo. J Appl Physiol 108:266–273

    Article  CAS  PubMed  Google Scholar 

  • Rhoden EL, Morgentaler A (2004) Risks of testosterone-replacement therapy and recommendations for monitoring. N Engl J Med 350:482–492

    Article  CAS  PubMed  Google Scholar 

  • Sakuma K, Yamaguchi A (2010) Molecular mechanisms in aging and current strategies to counteract sarcopenia. Curr Aging Sci 3:90–101

    Article  CAS  PubMed  Google Scholar 

  • Serra C, Bhasin S, Tangherlini F, Barton ER, Ganno M, Zhang A, Shansky J, Vandenburgh HH, Travison TG, Jasuja R et al (2011) The role of GH and IGF-I in mediating anabolic effects of testosterone on androgen-responsive muscle. Endocrinology 152:193–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sipilä S, Narici M, Kjaer M, Pöllänen E, Atkinson RA, Hansen M, Kovanen V (2013) Sex hormones and skeletal muscle weakness. Biogerontology 14:231–245

    Article  PubMed  Google Scholar 

  • Snyder PJ, Peachey H, Hannoush P, Berlin JA, Loh L, Lenrow DA, Holmes JH, Dlewati A, Santanna J, Rosen CJ et al (1999) Effect of testosterone treatment on body composition and muscle strength in men over 65 years of age. J Clin Endocrinol Metab 84:2647–2653

    CAS  PubMed  Google Scholar 

  • Svensson J, Moverare-Skrtic S, Windahl S, Swanson C, Sjogren K (2010) Stimulation of both estrogen and androgen receptors maintains skeletal muscle mass in gonadectomized male mice but mainly via different pathways. J Mol Endocrinol 45:45–57

    Article  CAS  PubMed  Google Scholar 

  • Tang K, Wagner PD, Breen EC (2010) TNF-alpha-mediated reduction in PGC-1alpha may impair skeletal muscle function after cigarette smoke exposure. J Cell Physiol 222:320–327

    Article  CAS  PubMed  Google Scholar 

  • Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP, Leibovitch SA (2005) Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem 280:2847–2856

    Article  CAS  PubMed  Google Scholar 

  • Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ (2009) Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 296:C1258–C1270

    Article  CAS  PubMed  Google Scholar 

  • Ustunel I, Akkoyunlu G, Demir R (2003) The effect of testosterone on gastrocnemius muscle fibres in growing and adult male and female rats: a histochemical, morphometric and ultrastructural study. Anat Histol Embryol 32:70–79

    Article  CAS  PubMed  Google Scholar 

  • Vandenput L, Mellstrom D, Karlsson MK, Orwoll E, Labrie F, Ljunggren O, Ohlsson C (2010) Serum estradiol is associated with lean mass in elderly Swedish men. Eur J Endocrinol 162:737–745

    Article  CAS  PubMed  Google Scholar 

  • Vanderschueren D, Vandenput L, Boonen S, Van HE, Swinnen JV, Bouillon R (2000) An aged rat model of partial androgen deficiency: prevention of both loss of bone and lean body mass by low-dose androgen replacement. Endocrinology 141:1642–1647

    CAS  PubMed  Google Scholar 

  • Vandesompele J, de Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Google Scholar 

  • Wallace MA, Hock MB, Hazen BC, Kralli A, Snow RJ, Russell AP (2011) Striated muscle activator of Rho signalling (STARS) is a PGC-1alpha/oestrogen-related receptor-alpha target gene and is upregulated in human skeletal muscle after endurance exercise. J Physiol 589:2027–2039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • White JP, Gao S, Puppa MJ, Sato S, Welle SL, Carson JA (2013) Testosterone regulation of Akt/mTORC1/FoxO3a signalling in skeletal muscle. Mol Cell Endocrinol 365:174–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiik A, Ekman M, Johansson O, Jansson E, Esbjörnsson M (2009) Expression of both oestrogen receptor alpha and beta in human skeletal muscle tissue. Histochem Cell Biol 131:181–189

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Shen Y, Pink H, Triantafillou J, Stimpson SA, Turnbull P, Han B (2004) Phosphorylation of p70s6 kinase is implicated in androgen-induced levator ani muscle anabolism in castrated rats. J Steroid Biochem Mol Biol 92:447–454

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a starting grant (to WD) from the Special Research Fund (BOF-UGent) and by a research grant from the Research Foundation-Flanders (FWO). Y Taes is a postdoctoral fellow of the Research Foundation-Flanders (FWO). SL is supported by an Alfred Deakin Post-Doctoral Research Fellowship.

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Derave.

Additional information

Communicated by Martin Flueck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 45 kb)

Supplementary material 2 (PPTX 1768 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Naeyer, H., Lamon, S., Russell, A.P. et al. Androgenic and estrogenic regulation of Atrogin-1, MuRF1 and myostatin expression in different muscle types of male mice. Eur J Appl Physiol 114, 751–761 (2014). https://doi.org/10.1007/s00421-013-2800-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2800-y

Keywords

Navigation