Skip to main content
Log in

Short-term creatine supplementation decreases reactive oxygen species content with no changes in expression and activity of antioxidant enzymes in skeletal muscle

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 30 September 2012

Abstract

The effect of short-term creatine (Cr) supplementation upon content of skeletal muscle-derived-reactive oxygen species (ROS) was investigated. Wistar rats were supplemented with Cr (5 g/kg BW) or vehicle, by gavage, for 6 days. Soleus and extensor digitorum longus (EDL) muscles were removed and incubated for evaluation of ROS content using Amplex-UltraRed reagent. The analysis of expression and activity of antioxidant enzymes (superoxide dismutase 1 and 2, catalase and glutathione peroxidase) were performed. Direct scavenger action of Cr on superoxide radical and hydrogen peroxide was also investigated. Short-term Cr supplementation attenuated ROS content in both soleus and EDL muscles (by 41 and 33.7%, respectively). Cr supplementation did not change expression and activity of antioxidant enzymes. Basal TBARS content was not altered by Cr supplementation. In cell-free experiments, Cr showed a scavenger effect on superoxide radical in concentrations of 20 and 40 mM, but not on hydrogen peroxide. These results indicate that Cr supplementation decreases ROS content in skeletal muscle possibly due to a direct action of Cr molecule on superoxide radical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Aoki MS, Lima WP, Miyabara EH, Gouveia CH, Moriscot AS (2004) Deleterious effects of immobilization upon rat skeletal muscle: role of creatine supplementation. Clin Nutr 23:1176–1183

    Article  PubMed  CAS  Google Scholar 

  • Azzi A, Montecucco C, Richter C (1975) The use of acetylated ferricytochrome c for the detection of superoxide radicals produced in biological membranes. Biochem Biophys Res Commun 65:597–603

    Article  PubMed  CAS  Google Scholar 

  • Bassit RA, Pinheiro CH, Vitzel KF, Sproesser AJ, Silveira LR, Curi R (2010) Effect of short-term creatine supplementation on markers of skeletal muscle damage after strenuous contractile activity. Eur J Appl Physiol 108:945–955

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff PL (1996) Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am J Physiol 271:E31–E37

    PubMed  CAS  Google Scholar 

  • Deldicque L, Louis M, Theisen D, Nielens H, Dehoux M, Thissen JP, Rennie MJ, Francaux M (2005) Increased IGF mRNA in human skeletal muscle after creatine supplementation. Med Sci Sports Exerc 37:731–736

    Article  PubMed  CAS  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  • Feldman EB (1999) Creatine: a dietary supplement and ergogenic aid. Nutr Rev 57:45–50

    Article  PubMed  CAS  Google Scholar 

  • Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  Google Scholar 

  • Fontaine MA, Geddes JW, Banks A, Butterfield DA (2000) Effect of exogenous and endogenous antioxidants on 3-nitropionic acid-induced in vivo oxidative stress and striatal lesions: insights into Huntington’s disease. J Neurochem 75:1709–1715

    Article  PubMed  CAS  Google Scholar 

  • Gerlinger-Romero F, Guimarães-Ferreira L, Giannocco G, Nunes MT (2011) Chronic supplementation of beta-hydroxy-beta methylbutyrate (HMβ) increases the activity of the GH/IGF-I axis and induces hyperinsulinemia in rats. Growth Horm IGF Res 21:57–62

    Article  PubMed  CAS  Google Scholar 

  • Greenhaff Pl (1997) The nutritional biochemistry of creatine. J Nutr Biochem 8:610–618

    Article  CAS  Google Scholar 

  • Greenhaff PL, Bodin K, Soderlund K, Hultman E (1994) Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Physiol 266:E725–E730

    PubMed  CAS  Google Scholar 

  • Kushmerick MJ, Moerland TS, Wiseman RW (1992) Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi. Proc Natl Acad Sci USA 89:7521–7525

    Article  PubMed  CAS  Google Scholar 

  • Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290:47–52

    Article  PubMed  CAS  Google Scholar 

  • Lecour S, Baouali AB, Maupoil V, Chahine R, Abadie C, Javouhey-Donzel A, Rochette L, Nadeau R (1998) Demonstration of the production of oxygen-centered free radicals during electrolysis using E. S. R. spintrapping techniques: effects on cardiac function in the isolated rat heart. Free Radic Biol Med 24:573–579

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Matthews RT, Yang L, Jenkins BG, Ferrante RJ, Rosen BR, Kaddurah-Daouk R, Beal MF (1998) Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 18:156–163

    PubMed  CAS  Google Scholar 

  • McKenna MJ, Morton J, Selig SE, Snow RJ (1999) Creatine supplementation increases muscle total creatine but not maximal intermittent exercise performance. J Appl Physiol 87:2244–2252

    PubMed  CAS  Google Scholar 

  • Moylan JS, Reid MB (2007) Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 35:411–429

    Article  PubMed  CAS  Google Scholar 

  • Oh-Ishi S, Kizaki T, Yamashita H, Nagata N, Suzuki K, Taniguchi N, Ohno H (1995) Alterations of superoxide dismutase iso-enzyme activity, content, and mRNA expression with aging in rat skeletal muscle. Mech Ageing Dev 84:65–76

    Article  PubMed  CAS  Google Scholar 

  • Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M (2006) Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol 573:525–534

    Article  PubMed  CAS  Google Scholar 

  • Op ‘t Eijnde B, Richter EA, Henquin JC, Kiens B, Hespel P (2001) Effect of creatine supplementation on creatine and glycogen content in rat skeletal muscle. Acta Physiol Scand 171:169–176

    Article  Google Scholar 

  • Persky AM, Brazeau GA, Hochhaus G (2003) Pharmacokinetics of the dietary supplement creatine. Clin Pharmacokinet 42:557–574

    Article  PubMed  CAS  Google Scholar 

  • Petrofsky JS, Fitch CD (1980) Contractile characteristics of skeletal muscles depleted of phosphocreatine. Pflugers Arch 384:123–129

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro CH, Silveira LR, Nachbar RT, Vitzel KF, Curi R (2010) Regulation of glycolysis and expression of glucose metabolism-related genes by reactive oxygen species in contracting skeletal muscle cells. Free Radic Biol Med 48:953–960

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro CH, Vitzel KF, Curi R (2012) Effect of N-acetylcysteine on markers of skeletal muscle injury after fatiguing contractile activity. Scand J Med Sci Sports 22:24–33

    Article  PubMed  CAS  Google Scholar 

  • Rhee SG, Chang TS, Jeong W, Kang D (2010) Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol Cells 29:539–549

    Article  PubMed  CAS  Google Scholar 

  • Sestili P, Martinelli C, Bravi G, Piccoli G, Curci R, Battistelli M, Falcieri E, Agostini D, Gioacchini AM, Stocchi V (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 40:837–849

    Article  PubMed  CAS  Google Scholar 

  • Stricker PR (1998) Other ergogenic agents. Clin Sports Med 17:283–297

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn CC, Gutteridge JM, Halliwell B (1985) Doxorubicin-dependent lipid peroxidation at low partial pressures of O2. Free Radic Biol Med 1:43–49

    Article  CAS  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    PubMed  CAS  Google Scholar 

  • Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Leonice Lourenço Poyares for technical support. L.G-F., F.G-R., K.F.V. and R.T.N. are recipients of fellowships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). C.H.J.P. is recipient of fellowship from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). M.T.N. and R.C. are recipients of fellowships from Conselho Nacional de Pesquisa e Desenvolvimento (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Guimarães-Ferreira.

Additional information

Communicated by Michael Lindinger.

L. Guimarães-Ferreira and C.H.J. Pinheiro contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guimarães-Ferreira, L., Pinheiro, C.H.J., Gerlinger-Romero, F. et al. Short-term creatine supplementation decreases reactive oxygen species content with no changes in expression and activity of antioxidant enzymes in skeletal muscle. Eur J Appl Physiol 112, 3905–3911 (2012). https://doi.org/10.1007/s00421-012-2378-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2378-9

Keywords

Navigation