Skip to main content

Advertisement

Log in

Comparison in muscle damage between maximal voluntary and electrically evoked isometric contractions of the elbow flexors

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study compared between maximal voluntary (VOL) and electrically stimulated (ES) isometric contractions of the elbow flexors for changes in indirect markers of muscle damage to investigate whether ES would induce greater muscle damage than VOL. Twelve non-resistance-trained men (23–39 years) performed VOL with one arm and ES with the contralateral arm separated by 2 weeks in a randomised, counterbalanced order. Both VOL and ES (frequency 75 Hz, pulse duration 250 μs, maximally tolerated intensity) exercises consisted of 50 maximal isometric contractions (4-s on, 15-s off) of the elbow flexors at a long muscle length (160°). Changes in maximal voluntary isometric contraction torque (MVC), range of motion, muscle soreness, pressure pain threshold and serum creatine kinase (CK) activity were measured before, immediately after and 1, 24, 48, 72 and 96 h following exercise. The average peak torque over the 50 isometric contractions was greater (P < 0.05) for VOL (32.9 ± 9.8 N m) than ES (16.9 ± 6.3 N m). MVC decreased greater and recovered slower (P < 0.05) after ES (15% lower than baseline at 96 h) than VOL (full recovery). Serum CK activity increased (P < 0.05) only after ES, and the muscles became more sore and tender after ES than VOL (P < 0.05). These results showed that ES induced greater muscle damage than VOL despite the lower torque output during ES. It seems likely that higher mechanical stress imposed on the activated muscle fibres, due to the specificity of motor unit recruitment in ES, resulted in greater muscle damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93:1318–1326

    PubMed  Google Scholar 

  • Adams GR, Harris RT, Woodard D, Dudley GA (1993) Mapping of electrical muscle stimulation using MRI. J Appl Physiol 74:532–537

    PubMed  CAS  Google Scholar 

  • Aldayel A, Jubeau M, McGuigan MR, Nosaka K (2010) Less indication of muscle damage in the second than initial electrical muscle stimulation bout consisting of isometric contractions of the knee extensors. Eur J Appl Physiol 108:709–717

    Article  PubMed  Google Scholar 

  • Alon G, Smith GV (2005) Tolerance and conditioning to neuro-muscular electrical stimulation within and between sessions and gender. J Sports Sci Med 4:395–405

    Google Scholar 

  • Armstrong RB (1984) Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Med Sci Sports Exerc 16:529–538

    PubMed  CAS  Google Scholar 

  • Bax L, Staes F, Verhagen A (2005) Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med 35:191–212

    Article  PubMed  Google Scholar 

  • Black CD, Elder CP, Gorgey A, Dudley GA (2008) High specific torque is related to lengthening contraction-induced skeletal muscle injury. J Appl Physiol 104:639–647

    Article  PubMed  Google Scholar 

  • Crameri RM, Aagaard P, Qvortrup K, Langberg H, Olesen J, Kjaer M (2007) Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. J Physiol 583:365–380

    Article  PubMed  CAS  Google Scholar 

  • Desbrosses K, Babault N, Scaglioni G, Meyer JP, Pousson M (2006) Neural activation after maximal isometric contractions at different muscle lengths. Med Sci Sports Exerc 38:937–944

    Article  PubMed  Google Scholar 

  • Fleck SJ, Kraemer WJ (2004) Types of strength training. In: Designing resistance training programs, 3rd edn. Human Kinetics, Champaign, pp 13–52

  • Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85:358–364

    PubMed  Google Scholar 

  • Jones DA, Newham DJ, Torgan C (1989) Mechanical influences on long-lasting human muscle fatigue and delayed-onset pain. J Physiol 412:415–427

    PubMed  CAS  Google Scholar 

  • Jubeau M, Gondin J, Martin A, Sartorio A, Maffiuletti NA (2007) Random motor unit activation by electrostimulation. Int J Sports Med 28:901–904

    Article  PubMed  CAS  Google Scholar 

  • Jubeau M, Sartorio A, Marinone PG, Agosti F, Van Hoecke J, Nosaka K, Maffiuletti NA (2008) Comparison between voluntary and stimulated contractions of the quadriceps femoris for growth hormone response and muscle damage. J Appl Physiol 104:75–81

    Article  PubMed  CAS  Google Scholar 

  • Lavender AP, Nosaka K (2008) A light load eccentric exercise confers protection against a subsequent bout of more demanding eccentric exercise. J Sci Med Sport 11:291–298

    Article  PubMed  Google Scholar 

  • Lieber RL, Kelly MJ (1991) Factors influencing quadriceps femoris muscle torque using transcutaneous neuromuscular electrical stimulation. Phys Ther 71:715–721 (discussion 722–713)

    PubMed  CAS  Google Scholar 

  • Lieber RL, Kelly MJ (1993) Torque history of electrically stimulated human quadriceps: implications for stimulation therapy. J Orthop Res 11:131–141

    Article  PubMed  CAS  Google Scholar 

  • Lieber RL, Woodburn TM, Friden J (1991) Muscle damage induced by eccentric contractions of 25% strain. J Appl Physiol 70:2498–2507

    PubMed  CAS  Google Scholar 

  • Mackey AL, Bojsen-Moller J, Qvortrup K, Langberg H, Suetta C, Kalliokoski KK, Kjaer M, Magnusson SP (2008) Evidence of skeletal muscle damage following electrically stimulated isometric muscle contractions in humans. J Appl Physiol 105:1620–1627

    Article  PubMed  Google Scholar 

  • Maffiuletti NA (2010) Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol 110:223–234

    Article  PubMed  Google Scholar 

  • Manta P, Kalfakis N, Kararizou E, Vassilopoulos D, Papageorgiou K (1995) Distribution of muscle fibre types in human skeletal muscle fascicles: an autopsy study of three human muscles. Funct Neurol 10:137–141

    PubMed  CAS  Google Scholar 

  • Morgan DL, Whitehead NP, Wise AK, Gregory JE, Proske U (2000) Tension changes in the cat soleus muscle following slow stretch or shortening of the contracting muscle. J Physiol 522(Pt 3):503–513

    Article  PubMed  CAS  Google Scholar 

  • Nosaka K, Clarkson PM (1996) Changes in indicators of inflammation after eccentric exercise of the elbow flexors. Med Sci Sports Exerc 28:953–961

    PubMed  CAS  Google Scholar 

  • Nosaka K, Newton M (2002) Difference in the magnitude of muscle damage between maximal and submaximal eccentric loading. J Strength Cond Res 16:202–208

    PubMed  Google Scholar 

  • Nosaka K, Sakamoto K (2001) Effect of elbow joint angle on the magnitude of muscle damage to the elbow flexors. Med Sci Sports Exerc 33:22–29

    Article  PubMed  CAS  Google Scholar 

  • Nosaka K, Newton M, Sacco P (2002) Responses of human elbow flexor muscles to electrically stimulated forced lengthening exercise. Acta Physiol Scand 174:137–145

    Article  PubMed  CAS  Google Scholar 

  • Nosaka K, Newton M, Sacco P, Chapman D, Lavender A (2005) Partial protection against muscle damage by eccentric actions at short muscle lengths. Med Sci Sports Exerc 37:746–753

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Paulsen G, Crameri R, Benestad HB, Fjeld JG, Morkrid L, Hallen J, Raastad T (2010) Time course of leukocyte accumulation in human muscle after eccentric exercise. Med Sci Sports Exerc 42:75–85

    PubMed  Google Scholar 

  • Peake JM, Nosaka K, Muthalib M, Suzuki K (2006) Systemic inflammatory responses to maximal versus submaximal lengthening contractions of the elbow flexors. Exerc Immunol Rev 12:72–85

    PubMed  Google Scholar 

  • Philippou A, Maridaki M, Bogdanis GC (2003) Angle-specific impairment of elbow flexors strength after isometric exercise at long muscle length. J Sports Sci 21:859–865

    Article  PubMed  Google Scholar 

  • Proske U, Allen TJ (2005) Damage to skeletal muscle from eccentric exercise. Exerc Sport Sci Rev 33:98–104

    Article  PubMed  Google Scholar 

  • Raastad T, Owe SG, Paulsen G, Enns D, Overgaard K, Crameri R, Kiil S, Belcastro A, Bergersen L, Hallen J (2010) Changes in calpain activity, muscle structure, and function after eccentric exercise. Med Sci Sports Exerc 42:86–95

    PubMed  Google Scholar 

  • van Bolhuis BM, Gielen CC (1997) The relative activation of elbow-flexor muscles in isometric flexion and in flexion/extension movements. J Biomech 30:803–811

    Article  PubMed  Google Scholar 

  • van Zuylen EJ, van Velzen A, Denier van der Gon JJ (1988) A biomechanical model for flexion torques of human arm muscles as a function of elbow angle. J Biomech 21:183–190

    Article  PubMed  Google Scholar 

  • Vanderthommen M, Duchateau J (2007) Electrical stimulation as a modality to improve performance of the neuromuscular system. Exerc Sport Sci Rev 35:180–185

    Article  PubMed  Google Scholar 

  • Vanderthommen M, Duteil S, Wary C, Raynaud JS, Leroy-Willig A, Crielaard JM, Carlier PG (2003) A comparison of voluntary and electrically induced contractions by interleaved 1H- and 31P-NMRS in humans. J Appl Physiol 94:1012–1024

    PubMed  CAS  Google Scholar 

  • Warren GL, Lowe DA, Armstrong RB (1999) Measurement tools used in the study of eccentric contraction-induced injury. Sports Med 27:43–59

    Article  PubMed  CAS  Google Scholar 

  • Warren GL, Ingalls CP, Lowe DA, Armstrong RB (2001) Excitation–contraction uncoupling: major role in contraction-induced muscle injury. Exerc Sport Sci Rev 29:82–87

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Dr. Julien Gondin (CRMBM, UMR CNRS 6612, University of the Mediterranean) for his valuable comments on our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Nosaka.

Additional information

Communicated by Alain Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jubeau, M., Muthalib, M., Millet, G.Y. et al. Comparison in muscle damage between maximal voluntary and electrically evoked isometric contractions of the elbow flexors. Eur J Appl Physiol 112, 429–438 (2012). https://doi.org/10.1007/s00421-011-1991-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1991-3

Keywords

Navigation