Skip to main content
Log in

Paxillin and focal adhesion kinase colocalise in human skeletal muscle and its associated microvasculature

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Focal adhesion kinase (FAK) and paxillin are functionally linked hormonal- and mechano-sensitive proteins. We aimed to describe paxillin’s subcellular distribution using widefield and confocal immunofluorescence microscopy and test the hypothesis that FAK and paxillin colocalise in human skeletal muscle and its associated microvasculature. Percutaneous muscle biopsies were collected from the m. vastus lateralis of seven healthy males, and 5-μm cryosections were stained with anti-paxillin co-incubated with anti-dystrophin to identify the sarcolemma, anti-myosin heavy chain type I for fibre-type differentiation, anti-dihydropyridine receptor to identify T-tubules, lectin UEA-I to identify the endothelium of microvessels and anti-α-smooth muscle actin to identify vascular smooth muscle cells (VSMC). Colocalisation of anti-paxillin with anti-dystrophin or anti-FAK was quantified using Pearson’s correlation coefficient on confocal microscopy images. Paxillin was primarily present in (sub)sarcolemmal regions of skeletal muscle fibres where it colocalised with dystrophin (r = 0.414 ± 0.026). The (sub)sarcolemmal paxillin immunofluorescence intensity was ~2.4-fold higher than in sarcoplasmic regions (P < 0.001) with sarcoplasmic paxillin immunofluorescence intensity ~10 % higher in type I than in type II fibres (P < 0.01). In some longitudinally orientated fibres, paxillin formed striations that corresponded to the I-band region. Paxillin immunostaining was highest in endothelial and VSMC and distributed heterogeneously in both cell types. FAK and paxillin colocalised at (sub)sarcolemmal regions and within the microvasculature (r = 0.367 ± 0.036). The first images of paxillin in human skeletal muscle suggest paxillin is present in (sub)sarcolemmal and I-band regions of muscle fibres and within the microvascular endothelium and VSMC. Colocalisation of FAK and paxillin supports their suggested role in hormonal and mechano-sensitive signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abedi H, Zachary I (1997) Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 272:15442–15451

    Article  CAS  PubMed  Google Scholar 

  • Anastasi G, Cutroneo G, Santoro G, Arco A, Rizzo G, Bramanti P, Rinaldi C, Sidoti A, Amato A, Favaloro A (2008) Costameric proteins in human skeletal muscle during muscular inactivity. J Anat 213:284–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bellis SL, Miller JT, Turner CE (1995) Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase. J Biol Chem 270:17437–17441

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35:609–616

    Article  CAS  PubMed  Google Scholar 

  • Bisht B, Dey CS (2008) Focal adhesion kinase contributes to insulin-induced actin reorganization into a mesh harboring glucose transporter-4 in insulin resistant skeletal muscle cells. BMC Cell Biol 9:48

    Article  PubMed Central  PubMed  Google Scholar 

  • Bisht B, Srinivasan K, Dey CS (2008) In vivo inhibition of focal adhesion kinase causes insulin resistance. J Physiol 586:3825–3837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown MC, Turner CE (1999) Characterization of paxillin LIM domain-associated serine threonine kinases: activation by angiotensin II in vascular smooth muscle cells. J Cell Biochem 76:99–108

    Article  CAS  PubMed  Google Scholar 

  • Brown MC, Turner CE (2004) Paxillin: adapting to change. Physiol Rev 84:1315–1339

    Article  CAS  PubMed  Google Scholar 

  • Brown MC, Perrotta JA, Turner CE (1996) Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J Cell Biol 135:1109–1123

    Article  CAS  PubMed  Google Scholar 

  • Crossland H, Kazi AA, Lang CH, Timmons JA, Pierre P, Wilkinson DJ, Smith K, Szewczyk NJ, Atherton PJ (2013) Focal adhesion kinase is required for IGF-1-mediated growth of skeletal muscle cells via a TSC2-mTOR-S6K1-associated pathway. Am J Physiol Endocrinol Metab 305:E183–E193

    Google Scholar 

  • de Boer MD, Selby A, Atherton P, Smith K, Seynnes OR, Maganaris CN, Maffulli N, Movin T, Narici MV, Rennie MJ (2007) The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J Physiol 585:241–251

    Article  PubMed Central  PubMed  Google Scholar 

  • Durieux AC, D’Antona G, Desplanches D, Freyssenet D, Klossner S, Bottinelli R, Fluck M (2009) Focal adhesion kinase is a load-dependent governor of the slow contractile and oxidative muscle phenotype. J Physiol 587:3703–3717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ervasti JM (2003) Costameres: the Achilles’ heel of Herculean muscle. J Biol Chem 278:13591–13594

    Article  CAS  PubMed  Google Scholar 

  • Evans WJ, Phinney SD, Young VR (1982) Suction applied to a muscle biopsy maximizes sample size. Med Sci Sports Exerc 14:101–102

    CAS  PubMed  Google Scholar 

  • Fluck M, Carson JA, Gordon SE, Ziemiecki A, Booth FW (1999) Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle. Am J Physiol 277:C152–C162

    CAS  PubMed  Google Scholar 

  • Fluck M, Ziemiecki A, Billeter R, Muntener M (2002) Fibre-type specific concentration of focal adhesion kinase at the sarcolemma: influence of fibre innervation and regeneration. J Exp Biol 205:2337–2348

    PubMed  Google Scholar 

  • Flueck M, Eyeang-Bekale N, Heraud A, Girard A, Gimpl M, Seynnes OR, Rittweger J, Niebauer J, Mueller E, Narici M (2011) Load-sensitive adhesion factor expression in the elderly with skiing: relation to fiber type and muscle strength. Scand J Med Sci Sports 21(Suppl 1):29–38

    Article  PubMed  Google Scholar 

  • Glover EI, Phillips SM, Oates BR, Tang JE, Tarnopolsky MA, Selby A, Smith K, Rennie MJ (2008) Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. J Physiol 586:6049–6061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goel HL, Dey CS (2002) Insulin stimulates spreading of skeletal muscle cells involving the activation of focal adhesion kinase, phosphatidylinositol 3-kinase and extracellular signal regulated kinases. J Cell Physiol 193:187–198

    Article  CAS  PubMed  Google Scholar 

  • Goldmann WH (2012) Mechanotransduction and focal adhesions. Cell Biol Int 36:649–652

    Article  CAS  PubMed  Google Scholar 

  • Gordon SE, Fluck M, Booth FW (2001) Selected contribution: skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent. J Appl Physiol 90:1174–1183; discussion 1165

    CAS  PubMed  Google Scholar 

  • Hagel M, George EL, Kim A, Tamimi R, Opitz SL, Turner CE, Imamoto A, Thomas SM (2002) The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol 22:901–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heidkamp MC, Bayer AL, Kalina JA, Eble DM, Samarel AM (2002) GFP-FRNK disrupts focal adhesions and induces anoikis in neonatal rat ventricular myocytes. Circ Res 90:1282–1289

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand JD, Schaller MD, Parsons JT (1995) Paxillin, a tyrosine phosphorylated focal adhesion-associated protein binds to the carboxyl terminal domain of focal adhesion kinase. Mol Biol Cell 6:637–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang D, Khoe M, Ilic D, Bryer-Ash M (2006) Reduced expression of focal adhesion kinase disrupts insulin action in skeletal muscle cells. Endocrinology 147:3333–3343

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Ishida M, Suero J, Takahashi M, Berk BC (1999) Agonist-stimulated cytoskeletal reorganization and signal transduction at focal adhesions in vascular smooth muscle cells require c-Src. J Clin Invest 103:789–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468:580–584

    Google Scholar 

  • Klossner S, Durieux AC, Freyssenet D, Flueck M (2009) Mechano-transduction to muscle protein synthesis is modulated by FAK. Eur J Appl Physiol 106:389–398

    Article  CAS  PubMed  Google Scholar 

  • Kovacic-Milivojevic B, Roediger F, Almeida EA, Damsky CH, Gardner DG, Ilic D (2001) Focal adhesion kinase and p130Cas mediate both sarcomeric organization and activation of genes associated with cardiac myocyte hypertrophy. Mol Biol Cell 12:2290–2307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lauritzen HP, Ploug T, Prats C, Tavare JM, Galbo H (2006) Imaging of insulin signaling in skeletal muscle of living mice shows major role of T-tubules. Diabetes 55:1300–1306

    Article  CAS  PubMed  Google Scholar 

  • Lauritzen HP, Galbo H, Brandauer J, Goodyear LJ, Ploug T (2008a) Large GLUT4 vesicles are stationary while locally and reversibly depleted during transient insulin stimulation of skeletal muscle of living mice: imaging analysis of GLUT4-enhanced green fluorescent protein vesicle dynamics. Diabetes 57:315–324

    Article  CAS  PubMed  Google Scholar 

  • Lauritzen HP, Ploug T, Ai H, Donsmark M, Prats C, Galbo H (2008b) Denervation and high-fat diet reduce insulin signaling in T-tubules in skeletal muscle of living mice. Diabetes 57:13–23

    Article  CAS  PubMed  Google Scholar 

  • Li S, Kim M, Hu YL, Jalali S, Schlaepfer DD, Hunter T, Chien S, Shyy JY (1997) Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. J Biol Chem 272:30455–30462

    Article  CAS  PubMed  Google Scholar 

  • Li S, Butler P, Wang Y, Hu Y, Han DC, Usami S, Guan JL, Chien S (2002) The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc Natl Acad Sci U S A 99:3546–3551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lipfert L, Haimovich B, Schaller MD, Cobb BS, Parsons JT, Brugge JS (1992) Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J Cell Biol 119:905–912

    Article  CAS  PubMed  Google Scholar 

  • Mattiussi S, Matsumoto K, Illi B, Martelli F, Capogrossi MC, Gaetano C (2006) Papilloma protein E6 abrogates shear stress-dependent survival in human endothelial cells: evidence for specialized functions of paxillin. Cardiovasc Res 70:578–588

    Article  CAS  PubMed  Google Scholar 

  • Mondello MR, Bramanti P, Cutroneo G, Santoro G, Di Mauro D, Anastasi G (1996) Immunolocalization of the costameres in human skeletal muscle fibers: confocal scanning laser microscope investigations. Anat Rec 245:481–487

    Article  CAS  PubMed  Google Scholar 

  • Narici MV, Flueck M, Koesters A, Gimpl M, Reifberger A, Seynnes OR, Niebauer J, Rittweger J, Mueller E (2011) Skeletal muscle remodeling in response to alpine skiing training in older individuals. Scand J Med Sci Sports 21(Suppl 1):23–28

    Article  PubMed  Google Scholar 

  • Pardo JV, Siliciano JD, Craig SW (1983) A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma. Proc Natl Acad Sci U S A 80:1008–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quach NL, Rando TA (2006) Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev Biol 293:38–52

    Article  CAS  PubMed  Google Scholar 

  • Schaller MD, Parsons JT (1995) pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mole Cell Biol 15:2635–2645

    CAS  Google Scholar 

  • Scheswohl DM, Harrell JR, Rajfur Z, Gao G, Campbell SL, Schaller MD (2008) Multiple paxillin binding sites regulate FAK function. J Mol Signal 3:1

    Article  PubMed Central  PubMed  Google Scholar 

  • Schlaepfer DD, Hauck CR, Sieg DJ (1999) Signaling through focal adhesion kinase. Prog Biophys Mol Biol 71:435–478

    Article  CAS  PubMed  Google Scholar 

  • Shikata Y, Rios A, Kawkitinarong K, DePaola N, Garcia JG, Birukov KG (2005) Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells. Exp Cell Res 304:40–49

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Mehta D, Gunst SJ (1999) Mechanosensitive tyrosine phosphorylation of paxillin and focal adhesion kinase in tracheal smooth muscle. Am J Physiol 276:C250–C258

    CAS  PubMed  Google Scholar 

  • Turner CE, Miller JT (1994) Primary sequence of paxillin contains putative SH2 and SH3 domain binding motifs and multiple LIM domains: identification of a vinculin and pp125Fak-binding region. J Cell Sci 107(Pt 6):1583–1591

    CAS  PubMed  Google Scholar 

  • Turner CE, Glenney JR Jr, Burridge K (1990) Paxillin: a new vinculin-binding protein present in focal adhesions. J Cell Biol 111:1059–1068

    Article  CAS  PubMed  Google Scholar 

  • Turner CE, Kramarcy N, Sealock R, Burridge K (1991) Localization of paxillin, a focal adhesion protein, to smooth muscle dense plaques, and the myotendinous and neuromuscular junctions of skeletal muscle. Exp Cell Res 192:651–655

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, Rennie MJ (2008) Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol 586:3701–3717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson OJ, Shaw CS, Sherlock M, Stewart PM, Wagenmakers AJ (2012) Immunofluorescent visualisation of focal adhesion kinase in human skeletal muscle and its associated microvasculature. Histochem Cell Biol 138:617–626

    Article  CAS  PubMed  Google Scholar 

  • Yano Y, Geibel J, Sumpio BE (1996) Tyrosine phosphorylation of pp125FAK and paxillin in aortic endothelial cells induced by mechanical strain. Am J Physiol 271:C635–C649

    CAS  PubMed  Google Scholar 

  • Zaidel-Bar R, Milo R, Kam Z, Geiger B (2007) A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J Cell Sci 120:137–148

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The antibodies against human slow myosin (A4.840-c) used in the study were developed by Dr. Blau and were obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biological Sciences, Iowa City, IA 52242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton J. M. Wagenmakers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, O.J., Bradley, H., Shaw, C.S. et al. Paxillin and focal adhesion kinase colocalise in human skeletal muscle and its associated microvasculature. Histochem Cell Biol 142, 245–256 (2014). https://doi.org/10.1007/s00418-014-1212-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1212-3

Keywords

Navigation