Skip to main content

Advertisement

Log in

Adipophilin distribution and colocalisation with lipid droplets in skeletal muscle

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Intramyocellular lipids (IMCL) are stored as discrete lipid droplets which are associated with a number of proteins. The lipid droplet-associated protein adipophilin (the human orthologue of adipose differentiation-related protein) is ubiquitously expressed and is one of the predominant lipid droplet-proteins in skeletal muscle. The aim of this study was to investigate the subcellular distribution of adipophilin in human muscle fibres and to measure the colocalisation of adipophilin with IMCL. Muscle biopsies from six lean male cyclists (BMI 23.4 ± 0.4, aged 31 ± 2 years, W max 346 ± 8) were stained for myosin heavy chain type 1, IMCL, adipophilin and mitochondria using immunofluorescence and viewed with widefield and confocal fluorescence microscopy. The present study shows that like IMCL, the adipophilin content is ~twofold greater in type I skeletal muscle fibres and is situated in the areas between the mitochondrial network. Colocalisation analysis demonstrated that 61 ± 2% of IMCL contain adipophilin. Although the majority of adipophilin is contained within IMCL, 36 ± 4% of adipophilin is not associated with IMCL. In conclusion, this study indicates that the IMCL pool is heterogenous, as the majority but not all IMCL contain adipophilin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartz R, Zehmer JK, Zhu M, Chen Y, Serrero G, Zhao Y, Liu P (2007) Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J Proteome Res 6:3256–3265

    Article  PubMed  CAS  Google Scholar 

  • Bays H, Mandarino L, DeFronzo RA (2004) Mechanisms of endocrine disease. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activates receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 89:463–478

    Article  PubMed  CAS  Google Scholar 

  • Bell M, Wang H, Chen H, McLenithan JC, Gong DW, Yang RZ et al (2008) Consequences of lipid droplet coat proteins down-regulation in liver cells: abnormal lipid droplet metabolism and induction of insulin resistance. Diabetes 57:2037–2045

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35:609–616

    Article  PubMed  CAS  Google Scholar 

  • Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C (1997) Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 38:2249–2263

    PubMed  CAS  Google Scholar 

  • Brasaemle DL, Dolios G, Shapiro L, Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279:46835–46842

    Article  PubMed  CAS  Google Scholar 

  • Ducharme NA, Bickel PE (2008) Lipid droplets in lipogenesis and lipolysis. Endocrinology 149:942–949

    Article  PubMed  CAS  Google Scholar 

  • Frayn KN, Arner P, Yki-Järvinen H (2006) Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem 42:89–103

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara (2008) Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 130:263–279

    Article  PubMed  CAS  Google Scholar 

  • Goodman JM (2008) The gregarious lipid droplet. J Biol Chem 283:28005–28009

    Article  PubMed  CAS  Google Scholar 

  • Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367–377

    Article  PubMed  CAS  Google Scholar 

  • Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R (1985) Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch 403:369–376

    Article  PubMed  CAS  Google Scholar 

  • Imamura M, Inoguchi T, Ikuyama S, Taniguchi S, Kobayashi K, Nakashima N, Nawata H (2002) ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am J Physiol Endocrinol Metab 283:E775–E783

    PubMed  CAS  Google Scholar 

  • Jocken JW, Smit E, Goossens GH, Essers YP, van Baak MA, Mensink M, Saris WH, Blaak EE (2008) Adipose triglyceride lipase (ATGL) expression in human skeletal muscle is type I (oxidative) fiber specific. Histochem Cell Biol 129:535–538

    Article  PubMed  CAS  Google Scholar 

  • Kayar SR, Hoppeler H, Essen-Gustavsson B, Schwerzmann K (1988) The similarity of mitochondrial distribution in equine skeletal muscles of differing oxidative capacity. J Exp Biol 137:253–263

    PubMed  CAS  Google Scholar 

  • Koopman R, Schaart G, Hesselink MKC (2001) Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids. Histochem Cell Biol 116:63–68

    PubMed  CAS  Google Scholar 

  • Koopman R, Manders RJF, Jonkers RAM, Hul GBJ, Kuipers H, van Loon LJC (2005) Intramyocellular lipid and glycogen content are reduced following resistance exercise in untrained healthy males. Eur J Appl Physiol 96:525–534

    Article  PubMed  Google Scholar 

  • Langfort J, Ploug T, Ihlemann J, Saldo M, Holm C, Galbo H (1999) Expression of hormone-sensitive lipase and its regulation by adrenaline in skeletal muscle. Biochem J 340:459–465

    Article  PubMed  CAS  Google Scholar 

  • Lewis GF, Carpentier A, Adeli K, Giacca A (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23:201–229

    Article  PubMed  CAS  Google Scholar 

  • Listenberger LL, Ostemeyer-Fay AG, Goldberg EB, Brown WJ, Brown DA (2007) Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J Lipid Res 48:2751–2761

    Article  PubMed  CAS  Google Scholar 

  • Magnusson B, Asp L, Boström P, Ruiz M, Stillemark-Billton P, Lindén D, Borén J, Olofsson SO (2006) Adipocyte differentiation-related protein promotes fatty acid storage in cytosolic triglycerides and inhibits secretion of very low-density lipoproteins. Arterioscler Thromb Vasc Biol 26:1566–1571

    Article  PubMed  CAS  Google Scholar 

  • Malenfant P, Joanisse DR, Theriault R, Goodpaster BH, Kelley DE, Simoneau JA (2001) Fat content in individual muscle fibers of lean and obese subjects. Int J Obes Relat Metab Disord 25:1316–1321

    Article  PubMed  CAS  Google Scholar 

  • Phillips SA, Choe CC, Ciaraldi TP, Greenberg AS, Kong AP, Baxi SC, Christiansen L, Mudaliar SR, Henry RR (2005) Adipocyte differentiation-related protein in human skeletal muscle: relationship to insulin sensitivity. Obesity Res 13:1321–1329

    Article  CAS  Google Scholar 

  • Prats C, Donsmark M, Qvortrup K, Londos C, Sztalryd C, Holm C, Galbo H, Ploug T (2006) Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine. J Lipid Res 47:2392–2399

    Article  PubMed  CAS  Google Scholar 

  • Shaw CS, Jones DA, Wagenmakers AJM (2008) Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem Cell Biol 129:65–72

    Article  PubMed  CAS  Google Scholar 

  • Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ (2006) The influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure. Am J Physiol Regul Integr Comp Physiol 292:R1271–R1278

    PubMed  Google Scholar 

  • Thiele C, Spandl J (2008) Cell biology of lipid droplets. Curr Opin Cell Biol 20:1–8

    Article  Google Scholar 

  • van Loon LJC (2004) Use of intramuscular triacylglycerol as a substrate source during exercise in humans. J Appl Physiol 97:1170–1187

    Article  PubMed  Google Scholar 

  • van Loon LJC, Koopman R, Stegen JHCH, Wagenmakers AJM, Keizer HA, Saris WHM (2003) Intramyocellular lipids form an important substrate source during moderate intensity exercise in endurance-trained males in a fasted state. J Physiol 553:611–625

    Article  PubMed  Google Scholar 

  • van Loon LJC, Koopman R, Manders R, van der Weegen W, van Kranenburg GP, Keizer HA (2004) Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab 287:E558–E565

    Article  PubMed  Google Scholar 

  • Wolins NE, Quaynor BK, Skinner JR, Schoenfish MJ, Tzekov A, Bickel PE (2005) S3-12, adipophilin, and TIP47 package lipid in adipocytes. J Biol Chem 280:19146–19155

    Article  PubMed  CAS  Google Scholar 

  • Wolins NE, Brasaemle DL, Bickel PE (2006) A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett 580:5484–5491

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was performed at the Wellcome Trust Clinical Research Facility, Queen Elizabeth Hospital, and we thank Heather Jones and Joanna Finney for nursing support during the study. The antibody against myosin (human slow fibres, A4.840) used in the study was developed by Dr. Blau and was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biological Sciences, Iowa City, IA 52242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Shaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, C.S., Sherlock, M., Stewart, P.M. et al. Adipophilin distribution and colocalisation with lipid droplets in skeletal muscle. Histochem Cell Biol 131, 575–581 (2009). https://doi.org/10.1007/s00418-009-0558-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-009-0558-4

Keywords

Navigation