Skip to main content
Log in

Network distribution of mitochondria and lipid droplets in human muscle fibres

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The objective of the present study was to develop a combination of fluorescent stains that would allow visualisation of the network of mitochondria and lipid droplets (intramyocellular lipids or IMCL) in human skeletal muscle fibres by means of conventional and confocal microscopy. Muscle biopsies were taken from the vastus lateralis of three lean, healthy and physically active male subjects. Frozen muscle sections were stained for mitochondria using antibodies against three mitochondrial proteins; porin, cytochrome c oxidase (COX) and NADH-ubiquinol oxidoreductase and neutral lipids were stained with oil red O. Anti-COX staining produced images with the strongest fluorescence signal and the highest resolution of the mitochondrial network and this stain was successfully combined with the antibody against type I fibre myosin. A highly organised matrix arrangement of mitochondria within the sarcomeres (in pairs at the I-band) was observed in the oxidative type I fibres. The density of mitochondria was the highest in the subsarcolemmal region. Anti-COX staining was combined with oil red O demonstrating that in type I fibres lipid droplets are mainly located in the space between the mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35:609–616

    Article  PubMed  CAS  Google Scholar 

  • De Bock K, Dresselaers T, Kiens B, Richter EA, van Hecke P, Hespel P (2007) Evaluation of intramyocellular lipid breakdown during exercise by biochemical assay, NMR spectroscopy, and oil-red-oil staining. Am J Physiol Endocrinol Metab doi:10.1152/ajpendo.00112.2007

  • De Pinto V, Ludwig O, Krause J, Benz R, Palmeri F (1987) Porin pores of mitochondrial outer membranes from high and low eukaryotic cells: biochemical and biophysical characterization. Biochim Biophys Acta 894:109–119

    Article  PubMed  Google Scholar 

  • Granneman JG, Moore HPH, Granneman RL, Greenberg AS, Obin MS, Zhu Z (2007) Analysis of lipolytic protein trafficking and interactions in adipocytes. J Biol Chem 282:5726–5735

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Masuda S, Taguchi S, Brooks GA (2005) Immunohistochemical analysis of MCT1, MCT2, and MCT 4 expression in rat plantaris muscle. J Physiol 567:121–129

    Article  PubMed  CAS  Google Scholar 

  • He J, Goodpaster BH, Kelley DE (2004) Effects of weight loss and physical activity on muscle lipid content and droplet size. Obese Res 12:761–769

    Google Scholar 

  • Hoppeler H (1999) Skeletal muscle substrate metabolism. Int J Obes Relat Metab Disord 23:S7–S10

    Article  PubMed  CAS  Google Scholar 

  • Holloway GP, Thrush AB, Heigenhauser GJF, Tandon NN, Dyck DJ, Bonen A, Spriet LL (2007) Skeletal muscle mitochondrial FAT/CD36 content and palmitate oxidation are not decreased in obese women. Am J Physiol Endocrinol Metab 292:E1782–E1789

    Article  PubMed  CAS  Google Scholar 

  • Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R (1985) Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch 403:369–376

    Article  PubMed  CAS  Google Scholar 

  • Itani SI, Pories WJ, MacDonald KG, Dohm GL (2001) Increased protein kinase C theta in skeletal muscle of diabetic patients. Metabolism 50:553–557

    Article  PubMed  CAS  Google Scholar 

  • Itani SI, Ruderman NB, Schmeider F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes 51:2005–2011

    Article  PubMed  CAS  Google Scholar 

  • Kayar SR, Hoppeler H, Essen-Gustavsson B, Schwerzmann K (1988a) The similarity of mitochondrial distribution in equine skeletal muscles of differing oxidative capacity. J Exp Biol 137:253–263

    PubMed  CAS  Google Scholar 

  • Kayar SR, Hoppeler H, Mermod L, Weibel ER (1988b) Mitochondrial size and shape in equine skeletal muscle: a three-dimensional reconstruction study. Anat Rec 222:333–339

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Hickner RC, Cortright RL, Dohm GL, Houmard JA (2000) Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 279:E1039–E1044

    PubMed  CAS  Google Scholar 

  • Koopman R, Schaart G, Hesselink MKC (2001) Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids. Histochem Cell Biol 116:63–68

    PubMed  CAS  Google Scholar 

  • Kuznetsov AV, Troppmair J, Sucher R, Hermann M, Saks V, Margreiter R (2006) Mitochondrial subpopulations and heterogeneity revealed by confocal imaging: possible physiological role? Biochimica Biophysica Acta 1757:686–691

    Article  CAS  Google Scholar 

  • Malenfant P, Joanisse DR, Theriault R, Goodpaster BH, Kelley DE, Simoneau JA (2001) Fat content in individual muscle fibers of lean and obese subjects. Int J Obes Relat Metab Disord 25:1316–1321

    Article  PubMed  CAS  Google Scholar 

  • Ogata T, Yamasaki Y (1997) Ultra-high-resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white and intermediate muscle fibres. Anatomical Rec 248:214–223

    Article  CAS  Google Scholar 

  • Petersen KF, Shulman GI (2006) Etiology of insulin resistance. Am J Med 119:10S–16S

    Article  CAS  Google Scholar 

  • Prats C, Donsmark M, Qvortrup K, Londos C, Sztalryd C, Holm C, Galbo H, Ploug T (2006) Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine. J Lipid Res 47:2392–2399

    Article  PubMed  CAS  Google Scholar 

  • Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54:8–14

    Article  PubMed  CAS  Google Scholar 

  • Schrauwen-Hinderling VB, van Loon LJC, Koopman R, Nicolay K, Saris WHM, Kooi ME (2003) Intramyocellular lipid content is increased after exercise in nonexercising human skeletal muscle. J Appl Physiol 95:2328–2332

    PubMed  CAS  Google Scholar 

  • Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176

    Article  PubMed  CAS  Google Scholar 

  • Stellingwerf T, Boon H, Jonkers RAM, Senden JM, Spriet LL, Koopman R, van Loon LJC (2007) Significant intramyocellular lipid use during prolonged cycling in endurance trained males as assessed by three different methodologies. Am J Physiol Endocrinol Metab 292:E1715–E1723

    Article  CAS  Google Scholar 

  • Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Brose AN, Devries MC, Hamadeh MJ (2006) The influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure. Am J Physiol Regul Integr Comp Physiol 292:R1271–R1278

    PubMed  Google Scholar 

  • van Loon LJC (2004) Use of intramuscular triacylglycerol as a substrate source during exercise in humans. J Appl Physiol 97:1170–1187

    Article  PubMed  Google Scholar 

  • van Loon LJC, Greenhaff PL, Constantin-Teodosiu D, Saris WHM, Wagenmakers AJM (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536:295–304

    Article  PubMed  Google Scholar 

  • van Loon LJC, Koopman R, Stegen JHCH, Wagenmakers AJM, Keizer HA, Saris WHM (2003) Intramyocellular lipids form an important substrate source during moderate intensity exercise in endurance-trained males in a fasted state. J Physiol 553:611–625

    Article  PubMed  CAS  Google Scholar 

  • van Loon LJC, Manders RJF, Koopman R, Kaastra B, Stegen JHCH, Gijsen AP, Saris WHM, Keizer HA (2005) Inhibition of adipose tissue lipolysis increases intramuscular lipid use in type 2 diabetic patients. Diabetologia 48:2097–2107

    Article  PubMed  CAS  Google Scholar 

  • Vendelin M, Beraud N, Guerrero K, Andrienko T, Kuznetsov AV, Olivares J, Kay L, Saks VA (2005) Mitochondrial regular arrangement in muscle cells: a “crystal-like” pattern. Am J Physiol Cell Physiol 288:C757–C767

    Article  PubMed  CAS  Google Scholar 

  • Vock R, Hoppeler H, Claasen H, Wu DXY, Billeter R, Weber J, Taylor CR, Weibel ER (1996) Design of the oxygen substrate pathways. VI. Structural basis of intracellular substrate supply to mitochondria in muscle cells. J Exp Biol 199:1689–1697

    PubMed  CAS  Google Scholar 

  • Watt MJ, Heigenhauser GJF, Spriet LL (2002) Intramuscular triacylglycerol utilization in human skeletal muscle during exercise: is there a controversy? J Appl Physiol 93:1185–1195

    PubMed  CAS  Google Scholar 

  • Yu C, Chen Y, Cline GW, Zhang D, Zong H et al (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277:50230–50236

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The antibody against myosin (human slow fibres, A4.840) used in the study was developed by Dr. Blau and was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biological Sciences, Iowa City, IA 52242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton J. M. Wagenmakers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, C.S., Jones, D.A. & Wagenmakers, A.J.M. Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem Cell Biol 129, 65–72 (2008). https://doi.org/10.1007/s00418-007-0349-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-007-0349-8

Keywords

Navigation