Skip to main content

Advertisement

Log in

Calliphora vicina (Diptera: Calliphoridae) pupae: a timeline of external morphological development and a new age and PMI estimation tool

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The minimum postmortem interval (PMImin) is commonly estimated using calliphorid larvae, for which there are established age estimation methods based on morphological and development data. Despite the increased duration and sedentary nature of the pupal stage of the blowfly, morphological age estimation methods are poorly documented and infrequently used for PMI determination. The aim of this study was to develop a timeline of metamorphosis, focusing on the development of external morphology (within the puparium), to provide a means of age and PMI estimation for Calliphora vicina (Rob-Desvoidy) pupae. Under controlled conditions, 1,494 pupae were reared and sampled at regular time intervals. After puparium removal, observations of 23 external metamorphic developments were correlated to age in accumulated degree hours (ADH). Two age estimation methods were developed based on (1) the combination of possible age ranges observed for each characteristic and (2) regression analyses to generate age estimation equations employing all 23 characteristics observed and a subset of ten characteristics most significantly correlated with age. Blind sample analysis indicated that, using the combination of both methods, pupal age could be estimated to within ±500 ADH with 95 % reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Amendt J, Campobasso CP, Gaudry E et al (2007) Best practice in forensic entomology—standards and guidelines. Int J Legal Med 121:90–104

    Article  PubMed  Google Scholar 

  2. Grassberger M, Reiter C (2001) Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen- and isomorphen-diagram. Forensic Sci Int 120:32–36

    Article  CAS  PubMed  Google Scholar 

  3. Arnott S, Turner B (2008) Post-feeding larval behaviour in the blowfly, Calliphora vicina: effects on post-mortem interval estimates. Forensic Sci Int 177:162–167

    Article  PubMed  Google Scholar 

  4. Anderson GS (2000) Minimum and maximum development rates of some forensically important Calliphoridae (Diptera). J Forensic Sci 45:824–832

    CAS  PubMed  Google Scholar 

  5. Marchenko MI (2001) Medicolegal relevance of cadaver entomofauna for the determination of the time of death. Forensic Sci Int 120:89–109

    Article  CAS  PubMed  Google Scholar 

  6. Greenberg B (1991) Flies as forensic indicators. J Med Entomol 28:565–577

    Article  CAS  PubMed  Google Scholar 

  7. Gaudry E, Myskowiak JB, Chauvet B et al (2001) Activity of the forensic entomology department of the French Gendarmerie. Forensic Sci Int 120:68–71

    Article  CAS  PubMed  Google Scholar 

  8. Amendt J, Krettek R, Niess C et al (2000) Forensic entomology in Germany. Forensic Sci Int 113:309–314

    Article  CAS  PubMed  Google Scholar 

  9. Greenberg B, Kunich JC (2002) Entomology and the law. Cambridge University Press, Cambridge

    Google Scholar 

  10. Finell N, Jarvilehto M (1983) Development of the compound eyes of the blowfly Calliphora erythrocephala: changes in morphology and function during metamorphosis. Ann Zool Fennici 20:223–234

    Google Scholar 

  11. Davies K, Harvey M (2013) Internal morphological analysis for age estimation of blow fly pupae (Diptera: Calliphoridae) in post-mortem interval estimation. J Forensic Sci 58:79–84

    Article  PubMed  Google Scholar 

  12. Bainbridge SP, Bownes M (1981) Staging the metamorphosis of Drosophila melanogaster. J Embryol Exp Morphol 66:57–80

    CAS  PubMed  Google Scholar 

  13. Hewitt CG (1907) The structure, development, and bionomics of the house-fly, Musca domestica, Linn. Part I.—the anatomy of the fly. Q J Microsc Sci 2:395–448

    Google Scholar 

  14. Karandikar KR, Ranade DR (1965) Studies on the pupation of Musca domestica nebulo Fabr (Diptera-Cyclorrhapha-Muscidae). Proc Plant Sci 61:204–213

    Google Scholar 

  15. Sivasubramanian P, Biagi M (1983) Morphology of the pupal stages of the fleshfly, Sarcophaga bullata (Parker) (Diptera: Sarcophagidae). Int J Insect Morphol Embryol 12:355–359

    Article  Google Scholar 

  16. Weissman A (1874) The metamorphosis of flies. I. Am Nat 8:603–612

    Article  Google Scholar 

  17. Weissman A (1874) The metamorphosis of flies. II. Am Nat 8:661–667

    Article  Google Scholar 

  18. Weissman A (1874) The metamorphosis of flies. III. Am Nat 8:713–721

    Article  Google Scholar 

  19. Lowne B (1895) Anatomy, physiology, morphology, and development of the blow-fly (Calliphora erythrocephala): a study in the comparative anatomy and morphology of insects. Kessinger Publishing (Nov 2009)

  20. Perez C (1910) Recherches histologiques sur la métamorphose des muscides <i> Calliphora erythrocephala Mg. Arch Zool Exp Genet 4:1–274

    Google Scholar 

  21. Richards CS, Simonsen TJ, Abel RL et al (2012) Virtual forensic entomology: improving estimates of minimum post-mortem interval with 3D micro-computed tomography. Forensic Sci Int 220:251–264

    Article  PubMed  Google Scholar 

  22. Metscher BD (2009) MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BioMed Cent. Physiol. 9:

  23. Beno M, Liszekova D, Farkas R (2007) Processing of soft pupae and uneclosed pharate adults of Drosophila for scanning electron microscopy. Microsc Res Tech 70:1022–1027

    Article  PubMed  Google Scholar 

  24. Harvey ML, Gaudieri S, Villet MH, Dadour IR (2008) A global study of forensically significant calliphorids: implications for identification. Forensic Sci Int 177:66–76

    Article  CAS  PubMed  Google Scholar 

  25. Zehner R, Amendt J, Boehme P (2009) Gene expression analysis as a tool for age estimation of blowfly pupae. Forensic Sci Int Genet Suppl Ser 2:292–293

    Article  Google Scholar 

  26. Brown K, Thorne A, Harvey M (2012) Preservation of Calliphora vicina (Diptera: Calliphoridae) pupae for use in post-mortem interval estimation. Forensic Sci Int 23:176–183

    Article  Google Scholar 

  27. Nabity P, Higley L, Heng-Moss T (2006) Effects of temperature on development of Phormia regina (Diptera: Calliphoridae) and use of developmental data in determining time intervals in forensic entomology. J Med Entomol 43:1276–1286

    Article  CAS  PubMed  Google Scholar 

  28. Salvetti M, Corbellini C, Aggiusti C et al (2011) Calliphora vicina human myiasis: a case report. Intern Emerg Med 7:135–137

    Article  Google Scholar 

  29. Davies K, Harvey M (2012) Precocious egg development in Calliphora vicina (Diptera: Calliphoridae): implications for developmental studies and post-mortem interval estimation. Med Vet Entomol 26:300–306

    Article  CAS  PubMed  Google Scholar 

  30. Donovan SE, Hall MJR, Turner BD, Moncrieff CB (2006) Larval growth rates of the blowfly, Calliphora vicina, over a range of temperatures. Med Vet Entomol 20:106–114

    Article  CAS  PubMed  Google Scholar 

  31. Anderson GS, VanLaerhoven SL (1996) Initial studies on insect succession on carrion in Southwestern British Columbia. J Forensic Sci 41:613–621

    Google Scholar 

  32. Slone DH, Gruner SV (2007) Thermoregulation in larval aggregations of carrion-feeding blow flies (Diptera: Calliphoridae). J Med Entomol 44:516–523

    Article  CAS  PubMed  Google Scholar 

  33. Charabidze D, Bourel B, Gosset D (2011) Larval-mass effect: characterisation of heat emission by necrophageous blowflies (Diptera: Calliphoridae) larval aggregates. Forensic Sci Int 211:61–66. doi:10.1016/j.forsciint.2011.04.016

    Article  PubMed  Google Scholar 

  34. Erzinclioglu Z (1996) Blowflies (Naturalists Handbook). Richmond Publishing Company

  35. Richards CS, Paterson ID, Villet MH (2008) Estimating the age of immature Chrysomya albiceps (Diptera: Calliphoridae), correcting for temperature and geographical latitude. Int J Legal Med 122:271–279

    Article  PubMed  Google Scholar 

  36. Voss SC, Cook DF, Dadour IR (2012) Investigation of within species developmental variation across environments in a forensically significant blowfly. In: Ninth meeting of the Eur. Assoc. Forensic Entomol. Torun, Poland, p 29

  37. Picard CJ, Wells JD (2010) The population genetic structure of North American Lucilia sericata (Diptera: Calliphoridae), and the utility of genetic assignment methods for reconstruction of postmortem corpse relocation. Forensic Sci Int 195:63–67. doi:10.1016/j.forsciint.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  38. Valtonen T, Roff D, Rantala M (2011) Analysis of the effects of inbreeding on lifespan and starvation resistance in Drosophila melanogaster. Genetica 139:525–533

    Article  PubMed  Google Scholar 

  39. Willems G (2001) A review of the most commonly used dental age estimation techniques. J Forensic Odontostomatol 19:9–17

    CAS  PubMed  Google Scholar 

  40. Saxena S (2011) Age estimation of Indian adults from orthopantomographs. Braz Oral Res 25:225–229

    Article  PubMed  Google Scholar 

  41. Ames C, Turner B, Daniel B (2006) Estimating the post-mortem interval (II): the use of differential temporal gene expression to determine the age of blowfly pupae. Int Congr Ser 1288:861–863

    Article  CAS  Google Scholar 

  42. Tarone AM, Foran DR (2011) Gene expression during blow fly development: improving the precision of age estimates in forensic entomology. J Forensic Sci 56:S112–S122

    Article  CAS  PubMed  Google Scholar 

  43. Boehme P, Spahn P, Amendt J, Zehner R (2013) Differential gene expression during metamorphosis: a promising approach for age estimation of forensically important Calliphora vicina pupae (Diptera: Calliphoridae). Int J Legal Med 127:243–249

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Matthew Guille for the microscope provision, Richard Davies for the Microsoft Excel technical advice and the Institute of Biomedical and Biomolecular Science (IBBS) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Brown.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, K., Thorne, A. & Harvey, M. Calliphora vicina (Diptera: Calliphoridae) pupae: a timeline of external morphological development and a new age and PMI estimation tool. Int J Legal Med 129, 835–850 (2015). https://doi.org/10.1007/s00414-014-1068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-014-1068-z

Keywords

Navigation