Skip to main content
Log in

A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Glassy nuclear fallout debris from near-surface nuclear tests is fundamentally reprocessed earth material. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. This study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclear test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. The volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adams CE, Farlow NH, Schell WR (1960) The compositions, structures and origins of radioactive fall-out particles. Geochim Cosmochim Acta 18:42–56

    Article  Google Scholar 

  • Amare K, Koeberl C (2006) Variation of chemical composition in Australasian tektites from different localities in Vietnam. Meteorit Planet Sci 41:107–123

    Article  Google Scholar 

  • Atkatz D, Bragg C (1995) Determining the yield of the Trinity nuclear device via gamma-ray spectroscopy. Am J Phys 63:411–413

    Article  Google Scholar 

  • Bainbridge KT (1976) Trinity. Los Alamos Scientific Laboratory, Los Alamos

    Google Scholar 

  • Belloni F, Himbert J, Marzocchi O, Romanello V (2011) Investigating incorporation and distribution of radionuclides in trinitite. J Environ Radioact 102:852–862

    Article  Google Scholar 

  • Bellucci JJ, Simonetti A (2012) Nuclear forensics: searching for nuclear device debris in trinitite-hosted inclusions. J Radioanal Nucl Chem 293:313–319

    Article  Google Scholar 

  • Bellucci JJ, Wallace C, Koeman EC, Simonetti A, Burns PC, Kieser J, Port E, Walczak T (2013) Distribution and behavior of some radionuclides associated with the Trinity nuclear test. J Radioanal Nucl Chem 295(3):2049–2057

    Article  Google Scholar 

  • Bellucci JJ, Simonetti A, Koeman EC, Wallace C, Burns PC (2014) A detailed geochemical investigation of post-nuclear detonation trinitite glass at high spatial resolution: delineating anthropogenic vs. natural components. Chem Geol 365:69–86

    Article  Google Scholar 

  • Belza J, Goderis S, Smit J, Vanhaecke F, Baert K, Terryn H, Claeys P (2015) High spatial resolution geochemistry and textural characteristics of ‘microtektite’ glass spherules in proximal Cretaceous–Paleogene sections: insights into glass alteration patterns and precursor melt lithologies. Geochim Cosmochim Acta 152:1–38. doi:10.1016/j.gca.2014.12.013

    Article  Google Scholar 

  • Bentor YK (1986) A new approach to the problem of tektite genesis. Earth Planet Sci Lett 77:1–13

    Article  Google Scholar 

  • Bunch TE, Hermes RE, Moore AMT, Kennett DJ, Weaver JC, Wittke JH, DeCarli PS, Bischoff JL, Hillman GC, Howard GA, Kimbel DR, Kletetschka G, Lipo CP, Sakai S, Revay Z, West A, Firestone RB, Kennett JP (2012) Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. Proc Natl Acad Sci USA 109:E1903–E1912

    Article  Google Scholar 

  • Carney KP, Finck MR, McGrath CA, Martin LR, Lewis RR (2013) The development of radioactive glass surrogates for fallout debris. J Radioanal Nucl Chem 299:363–372

    Article  Google Scholar 

  • Carter EA, Hargreaves MD, Kee TP, Pasek MA, Edwards HGM (2010) A Raman spectroscopic study of a fulgurite. Philos Trans R Soc A 368:3087–3097

    Article  Google Scholar 

  • Cassata WS, Prussin SG, Knight KB, Hutcheon ID, Isselhardt BH, Renne PR (2014) When the dust settles: stable xenon isotope constraints on the formation of nuclear fallout. J Environ Radioact 137:88–95

    Article  Google Scholar 

  • Dai ZR, Crowhurst JC, Grant CD et al (2013) Exploring high temperature phenomena related to post-detonation using an electric arc. J Appl Phys 114:204901. doi:10.1063/1.4829660

    Article  Google Scholar 

  • Davis A, Richter F (2003) Condensation and evaporation of solar system materials. In: Davis A (ed) Meteorites, comets and planets. Elsevier, Amsterdam, pp 407–430

    Google Scholar 

  • de Niem D, Kührt E, Motschmann U (2008) Initial condensate composition during asteroid impacts. Icarus 196:539–551. doi:10.1016/j.icarus.2008.03.012

    Article  Google Scholar 

  • Donovan J (2016) Probe for EPMA user’s guide and reference. Probe Software, Eugene

    Google Scholar 

  • Dressler BO, Reimold WU (2001) Terrestrial impact melt rocks and glasses. Earth Sci Rev 56:205–284

    Article  Google Scholar 

  • Ebel DS (2006) Condensation of rocky material in astrophysical environments. In: Lauretta DS, McSween HY Jr (eds) Meteorites and the early solar system II. University of Arizona, Tucson, pp 253–277

    Google Scholar 

  • Ebel DS, Grossman L (2005) Spinel-bearing spherules condensed from the Chicxulub impact-vapor plume. Geology 33:293–296. doi:10.1130/G21136.1

    Article  Google Scholar 

  • Eby N, Hermes R, Charnley N, Smoliga JA (2010) Trinitite—the atomic rock. Geol Today 26:180–185

    Article  Google Scholar 

  • Eby GN, Charnley N, Pirrie D, Hermes R, Smoliga J, Rollinson G (2015) Trinitite redux: mineralogy and petrology. Am Mineral 100:427–441

    Article  Google Scholar 

  • Elkins Tanton LT, Kelly DC, Bico J, Bush JWM (2002) Microtektites as vapor condensates, and a possible new strewn field at 5 Ma. Lunar Planet Sci Conf 33:1622

    Google Scholar 

  • Eppich G, Knight K, Jacomb-Hood T, Spriggs G, Hutcheon I (2014) Constraints on fallout melt glass formation from a near-surface nuclear test. J Radioanal Nucl Chem 302:593–609

    Article  Google Scholar 

  • Fahey AJ, Zeissler CJ, Newbury DE, Davis J, Lindstrom RM (2010) Postdetonation nuclear debris for attribution. Proc Natl Acad Sci 107:20207–20212

    Article  Google Scholar 

  • Folco L, D’Orazio M, Tiepolo M, Tonarini S, Ottolini L, Perchiazzi N, Rochette R, Glass BP (2009) Transantarctic Mountain microtektites: geochemical affinity with Australasian microtektites. Geochim Cosmochim Acta 73:3694–3722

    Article  Google Scholar 

  • Freiling EC (1961) Radionuclide fractionation in bomb debris. Science 133:1991–1998

    Article  Google Scholar 

  • Freiling EC, Crocker GR, Adams CE (1965) Nuclear debris formation. In: Klement AW (ed) Radioactive fallout from nuclear weapons tests. US Atomic Energy Commission, Germantown, pp 1–41

    Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  • Glass BP, Simonson BM (2013) Distal impact ejecta layers. Springer, Berlin

    Book  Google Scholar 

  • Glass BP, Huber H, Koeberl C (2004) Geochemistry of Cenozoic microtektites and clinopyroxene-bearing spherules. Geochim Cosmochim Acta 68:3971–4006

    Article  Google Scholar 

  • Glasstone S, Dolan PJ (1977) The effects of nuclear weapons. US Government Printing Office, Washington

    Google Scholar 

  • Grossman L, Ebel DS, Simon SB, Davis AM, Richter FM, Parsad NM (2000) Major element chemical and isotopic compositions of refractory inclusions in C3 chondrites: the separate roles of condensation and evaporation. Geochim Cosmochim Acta 64:2879–2894

    Article  Google Scholar 

  • Hanson SK, Pollington AD, Waidmann CR, Kinman WS, Wende AM, Miller JL, Berger JA, Oldham WJ, Selby HD (2016) Measurement of extinct fission products in nuclear bomb debris: determination of the yield of the Trinity nuclear test 70 y later. Proc Natl Acad Sci. doi:10.1073/pnas.1602792113

    Google Scholar 

  • Heide K, Heide G, Kloess G (2001) Glass chemistry of tektites. Planet Space Sci 49:839–844

    Article  Google Scholar 

  • Hermes RE, Strickfaden WB (2005) A new look at trinitite. Nucl Weapons J 2005:2–7

    Google Scholar 

  • Huppert HE, Stephen R, Sparks J, Turner JS (1984) Some effects of viscosity on the dynamics of replenished magma chambers. J Geophys Res Sol Earth 89:6857–6877

    Article  Google Scholar 

  • Izrael YA (2002) Radioactive fallout after nuclear explosions and accidents. Elsevier, New York

    Google Scholar 

  • Johnson BC, Melosh HJ (2012) Formation of spherules in impact produced vapor plumes. Icarus 217:416–430

    Article  Google Scholar 

  • Johnson BC, Melosh HJ (2014) Formation of melt droplets, melt fragments, and accretionary impact lapilli during a hypervelocity impact. Icarus 228:347–363

    Article  Google Scholar 

  • Joseph ML (2012) A geochemical analysis of fulgurites: from the inner glass to the outer crust. Dissertation, University of South Florida

  • Kathmann SM, Schenter GK, Garrett BC (2005) Ion-induced nucleation: the importance of chemistry. Phys Rev Lett 94:116104

    Article  Google Scholar 

  • Koeberl C, Bottomley R, Glass BP, Storzer D (1997) Geochemistry and age of Ivory Coast tektites and microtektites. Geochim Cosmochim Acta 61:1745–1772

    Article  Google Scholar 

  • Koeberl C, Brandstätter F, Glass BP, Hecht L, Mader D, Reimold WU (2007) Uppermost impact fallback layer in the Bosumtwi crater (Ghana): mineralogy, geochemistry, and comparison with Ivory Coast tektites. Meteorit Planet Sci 42:709–729

    Article  Google Scholar 

  • Koeman EC, Simonetti A, Chen W, Burns PC (2013) Oxygen isotope composition of trinitite postdetonation materials. Anal Chem 85:11913–11919

    Article  Google Scholar 

  • Kottlowski FE (1953) Geology and ore deposits of a part of the Hansonburg Mining District Socorro County, New Mexico. New Mex Bur Mines Min Resour Circ 23:1–9

    Google Scholar 

  • Krot AN, Amelin Y, Bland P, Ciesla FJ, Connelly J, Davis AM, Huss GR, Hutcheon ID, Makide K, Nagashima K, Nyquist LE, Russell SS, Scott ERD, Thrane K, Yurimoto H, Yin QZ (2009) Origin and chronology of chondritic components: a review. Geochim Cosmochim Acta 73:4963–4997

    Article  Google Scholar 

  • Kyte FT, Bostwick JA (1995) Magnesioferrite spinel in Cretaceous/Tertiary boundary sediments of the Pacific basin: remnants of hot, early ejecta from the Chicxulub impact? Earth Planet Sci Lett 132:113–127

    Article  Google Scholar 

  • Lee YT, Chen JC, Ho KS, Juang WS (2004) Geochemical studies of tektites from East Asia. Geochem J 38:1–17

    Article  Google Scholar 

  • Lehnert K, Su Y, Langmuir CH, Sarbas B, Nohl U (2000) A global geochemical database structure for rocks. Geochem Geophys Geosyst 1:1012. doi:10.1029/1999GC000026

    Article  Google Scholar 

  • Lewis LA, Knight KB, Matzel JE, Prussin SG, Zimmer MM, Kinman WS, Ryerson FJ, Hutcheon ID (2015) Spatially-resolved analyses of aerodynamic fallout from a uranium-fueled nuclear test. J Environ Radioact 148:183–195

    Article  Google Scholar 

  • Liang Y (2010) Multicomponent diffusion in molten silicates: theory, experiments, and geological applications. Rev Mineral Geochem 72:409–446

    Article  Google Scholar 

  • Liezers M, Fahey A, Carman A, Eiden G (2015) The formation of trinitite-like surrogate nuclear explosion debris (SNED) and extreme thermal fractionation of SRM-612 glass induced by high power CW CO2 laser irradiation. J Radioanal Nucl Chem 304:705–715

    Article  Google Scholar 

  • Lin S, Guan YB, Hsu WB (2011) Geochemistry and origin of tektites from Guilin of Guangxi, Guangdong and Hainan. Sci China Ser D 54:349–358

    Article  Google Scholar 

  • Lineweaver Jm (1963) Oxygen outgassing caused by electron bombardment of glass. J Appl Phys 34:1786–1791

    Article  Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    Article  Google Scholar 

  • Martin Crespo T, Lozano Fernandez RG, Gonzalez Laguna R (2009) The fulgurite of Torre de Moncorvo (Portugal): description and analysis of the glass. Eur J Mineral 21:783–794

    Article  Google Scholar 

  • Mayer K, Wallenius M, Varga Z (2013) Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem Rev 113:884–900

    Article  Google Scholar 

  • Melosh HJ, Vickery AM (1991) Melt droplet formation in energetic impact events. Nature 350:494–497

    Article  Google Scholar 

  • Miller C (1960) A theory of formation of fallout from land-surface nuclear detonations and decay of the fission products. Research and Development Technical Report, U.S. Naval Radiological Defense Laboratory, San Francisco, California

  • Molgaard J, Auxier J, Giminaro A, Oldham CJ, Cook M, Young S, Hall H (2015) Development of synthetic nuclear melt glass for forensic analysis. J Radioanal Nucl Chem 304:1293–1301

    Article  Google Scholar 

  • Montanari A, Hay RL, Alvarez W (1983) Spheroids at the Cretaceous-Tertiary boundary are altered impact droplets of basaltic composition. Geology 11:668–671

    Article  Google Scholar 

  • Montel J-P, Vielzeuf D (1997) Partial melting of metagreywackes, Part II. Composition of minerals and melts. Contrib Mineral Petrol 128:176–196

    Article  Google Scholar 

  • Morfill GE, Ivlev AV (2009) Complex plasmas: an interdisciplinary research field. Rev Mod Phys 81:1353–1404

    Article  Google Scholar 

  • Morgan GB, London D (1996) Optimizing the electron microprobe of hydrous alkali aluminosilicate glasses. Am Mineral 81:1176–1185

    Article  Google Scholar 

  • Morizet Y, Brooker RA, Iacono-Marziano B, Kjarsgaard BA (2013) Quanitification of dissolved CO2 in silicate glasses using micro-Raman spectroscopy. Am Mineral 98:1788–1802. doi:10.2138/am.2013.4516

    Article  Google Scholar 

  • Mysen B, Richet P (2005) Silicate glasses and melts: properties and structure. Elsevier, Amsterdam

    Google Scholar 

  • Neal JT, Smith RE, Jones BF (1983) Pleistocene Lake Trinity, an evaporite basin in the northern Jornada del Muerto, New Mexico. In: Chapin CE, Callender JF (eds) New Mexico Geological Society 34th annual field conference guidebook. New Mexico Geological Society, Socorro, pp 285–290

    Google Scholar 

  • Parekh PP, Semkow TM, Torres MA, Haines DK, Cooper JM, Rosenberg PM, Kitto ME (2006) Radioactivity in trinitite six decades later. J Environ Radioact 85:103–120

    Article  Google Scholar 

  • Pasek M, Block K, Pasek V (2012) Fulgurite morphology: a classification scheme and clues to formation. Contrib Mineral Petrol 164:477–492

    Article  Google Scholar 

  • Pittauerová D, Kolb WM, Rosenstiel JC, Fischer HW (2010) Radioactivity in Trinitite—a review and new measurements. In: Proceedings of third European IRPA congress, Helsinki, Finland, pp 14–16

  • Reines F, Penney WG, Rarita W, Swinehart D (1945) July 16th nuclear explosion: permanent earth displacement. Los Alamos National Laboratory Report LA-365

  • Ross CS (1948) Optical properties of glass from Alamogordo, New Mexico. Am Mineral 33:360–362

    Google Scholar 

  • Ryan MP, Blevins JYK (1987) The viscosity of synthetic and natural silicate melts and glasses at high temperatures and 1 bar (105 Pascals) pressure and at higher pressures. USGS Bull 1764

  • Schlauf D, Siemon K, Weber R, Esterlund RA, Molzahn D, Patzelt P (1997) Trinitite redux: comment on “Determining the yield of the Trinity nuclear device via gamma-ray spectroscopy”, by David Atkatz and Christopher Bragg [Am. J. Phys. 63 (5), 411–413 (1995)]. Am J Phys 65:1110–1112

    Article  Google Scholar 

  • Sharp N, McDonough W, Ticknor B, Ash R, Piccoli P, Borg D (2014) Rapid analysis of trinitite with nuclear forensic applications for post-detonation material analyses. J Radioanal Nucl Chem 302:57–67

    Article  Google Scholar 

  • Simonson BM, Glass BP (2004) Spherule layers—records of ancient impacts. Annu Rev Earth Planet Sci 32:329–361

    Article  Google Scholar 

  • Smit J, Alvarez W, Montanari A, Swinburne N, van Kempen TM, Klaver GT (1992) ‘Tektites’ and microkrystites at the Cretaceous Tertiary boundary—two strewn fields, one crater? Proc Lunar Plant Sci Conf 22:87–100

    Google Scholar 

  • Son TH, Koeberl C (2005) Chemical variation within fragments of Australasian tektites. Meteorit Planet Sci 40:805–815

    Article  Google Scholar 

  • Stewart K (1956) The condensation of a vapour to an assembly of droplets or particles. Trans Faraday Soc 52:161–173

    Article  Google Scholar 

  • Thompson AB (1982) Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Am J Sci 282:1567–1595

    Article  Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in pelitic systems: consequences for crustal differentiation. Contrib Mineral Petrol 98:257–276

    Article  Google Scholar 

  • Vishnyakov VI, Kiro SA, Ennan AA (2011) Heterogeneous ion-induced nucleation in thermal dusty plasmas. J Phys D Appl Phys 44:215201

    Article  Google Scholar 

  • von Engelhardt WV, Luft E, Arndt J, Schock H, Weiskirchner W (1987) Origin of moldavites. Geochim Cosmochim Acta 51:1425–1443

    Article  Google Scholar 

  • von Engelhardt W, Berthold C, Wenzel T, Dehner T (2005) Chemistry, small-scale inhomogeneity, and formation of moldavites as condensates from sands vaporized by the Ries impact. Geochim Cosmochim Acta 69:5611–5626

    Article  Google Scholar 

  • Wallace C, Bellucci JJ, Simonetti A, Hainley T, Koeman EC, Burns PC (2013) A multi-method approach for determination of radionuclide distribution in trinitite. J Radioanal Nucl Chem 298:993–1003

    Article  Google Scholar 

  • Weber RH (1964) Geology of the Carrizozo quadrangle, New Mexico. In: Ash SRD (ed) New Mexico Geological Society 15th annual fall field conference guidebook. New Mexico Geological Society, Socorro, pp 100–109

    Google Scholar 

  • White WM (2015) Geochemistry. Wiley-Blackwell

  • Winter JD (2014) Principles of igneous and metamorphic petrology. Prentice Hall, New York

    Google Scholar 

  • Yoneda S, Grossman L (1995) Condensation of CaOMgOAl2O3SiO2 liquids from cosmic gases. Geochim Cosmochim Acta 59:3413–3444

    Article  Google Scholar 

  • Zhang Y, Ni H, Chen Y (2010) Diffusion Data in Silicate Melts. Rev Mineral Geochem 72:311–408

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Warren Oldham and Susan Hanson of Los Alamos National Lab for providing the samples used in this work. Dr. Ryna Marinenko is thanked for help in obtaining analytical glass standards. Many thanks to two helpful anonymous reviewers and Dr. Mark Ghiorso for his efficient editorial handling. This project was funded through the United States Department of Energy, the G. T. Seaborg Institute for Actinide Science, and the Strategic Outcomes Office at Los Alamos National Lab. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. This document has been approved for unlimited release under LA-UR-15-20991.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chloë E. Bonamici.

Additional information

Communicated by Mark S Ghiorso.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonamici, C.E., Kinman, W.S., Fournelle, J.H. et al. A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests. Contrib Mineral Petrol 172, 2 (2017). https://doi.org/10.1007/s00410-016-1320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1320-2

Keywords

Navigation