Skip to main content

Advertisement

Log in

Androgen-dependent impairment of myogenesis in spinal and bulbar muscular atrophy

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Spinal and bulbar muscular atrophy (SBMA) is an inherited neuromuscular disease caused by expansion of a polyglutamine (polyQ) tract in the androgen receptor (AR). SBMA is triggered by the interaction between polyQ-AR and its natural ligands, testosterone and dihydrotestosterone (DHT). SBMA is characterized by the loss of lower motor neurons and skeletal muscle fasciculations, weakness, and atrophy. To test the hypothesis that the interaction between polyQ-AR and androgens exerts cell-autonomous toxicity in skeletal muscle, we characterized the process of myogenesis and polyQ-AR expression in DHT-treated satellite cells obtained from SBMA patients and age-matched healthy control subjects. Treatment with androgens increased the size and number of myonuclei in myotubes from control subjects, but not from SBMA patients. Myotubes from SBMA patients had a reduced number of nuclei, suggesting impaired myotube fusion and altered contractile structures. The lack of anabolic effects of androgens on myotubes from SBMA patients was not due to defects in myoblast proliferation, differentiation or apoptosis. DHT treatment of myotubes from SBMA patients increased nuclear accumulation of polyQ-AR and decreased the expression of interleukin-4 (IL-4) when compared to myotubes from control subjects. Following DHT treatment, exposure of myotubes from SBMA patients with IL-4 treatment rescued myonuclear number and size to control levels. This supports the hypothesis that androgens alter the fusion process in SBMA myogenesis. In conclusion, these results provide evidence of an androgen-dependent impairment of myogenesis in SBMA that could contribute to disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abmayr SM, Pavlath GK (2012) Myoblast fusion: lessons from flies and mice. Development 139:641–656. doi:10.1242/dev.068353;10.1242/dev.068353

    Article  PubMed  CAS  Google Scholar 

  2. Adachi H, Katsuno M, Minamiyama M, Waza M, Sang C, Nakagomi Y, Kobayashi Y, Tanaka F, Doyu M, Inukai A, Yoshida M, Hashizume Y, Sobue G (2005) Widespread nuclear and cytoplasmic accumulation of mutant androgen receptor in SBMA patients. Brain 128:659–670. doi:10.1093/brain/awh381

    Article  PubMed  Google Scholar 

  3. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    PubMed  CAS  Google Scholar 

  4. Amato AA, Prior TW, Barohn RJ, Snyder P, Papp A, Mendell JR (1993) Kennedy’s disease: a clinicopathologic correlation with mutations in the androgen receptor gene. Neurology 43:791–794

    Article  PubMed  CAS  Google Scholar 

  5. Arnold AS, Gueye M, Guettier-Sigrist S, Courdier-Fruh I, Coupin G, Poindron P, Gies JP (2004) Reduced expression of nicotinic AChRs in myotubes from spinal muscular atrophy I patients. Lab Invest 84:1271–1278. doi:10.1038/labinvest.3700163

    Article  PubMed  CAS  Google Scholar 

  6. Bhasin S, Storer TW, Berman N, Yarasheski KE, Clevenger B, Phillips J, Lee WP, Bunnell TJ, Casaburi R (1997) Testosterone replacement increases fat-free mass and muscle size in hypogonadal men. J Clin Endocrinol Metab 82:407–413

    Article  PubMed  CAS  Google Scholar 

  7. Brodsky IG, Balagopal P, Nair KS (1996) Effects of testosterone replacement on muscle mass and muscle protein synthesis in hypogonadal men–a clinical research center study. J Clin Endocrinol Metab 81:3469–3475

    Article  PubMed  CAS  Google Scholar 

  8. Chevalier-Larsen ES, O’Brien CJ, Wang H, Jenkins SC, Holder L, Lieberman AP, Merry DE (2004) Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy. J Neurosci 24:4778–4786. doi:10.1523/JNEUROSCI.0808-04.2004

    Article  PubMed  CAS  Google Scholar 

  9. Doumit ME, Cook DR, Merkel RA (1996) Testosterone up-regulates androgen receptors and decreases differentiation of porcine myogenic satellite cells in vitro. Endocrinology 137:1385–1394

    Article  PubMed  CAS  Google Scholar 

  10. Glass D, Roubenoff R (2010) Recent advances in the biology and therapy of muscle wasting. Ann N Y Acad Sci 1211:25–36. doi:10.1111/j.1749-6632.2010.05809.x

    Article  PubMed  Google Scholar 

  11. Guidetti D, Vescovini E, Motti L, Ghidoni E, Gemignani F, Marbini A, Patrosso MC, Ferlini A, Solime F (1996) X-linked bulbar and spinal muscular atrophy, or Kennedy disease: clinical, neurophysiological, neuropathological, neuropsychological and molecular study of a large family. J Neurol Sci 135:140–148

    Article  PubMed  CAS  Google Scholar 

  12. Harding AE, Thomas PK, Baraitser M, Bradbury PG, Morgan-Hughes JA, Ponsford JR (1982) X-linked recessive bulbospinal neuronopathy: a report of ten cases. J Neurol Neurosurg Psychiatry 45:1012–1019

    Article  PubMed  CAS  Google Scholar 

  13. Horsley V, Jansen KM, Mills ST, Pavlath GK (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113:483–494

    Article  PubMed  CAS  Google Scholar 

  14. Kadi F (2008) Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br J Pharmacol 154:522–528. doi:10.1038/bjp.2008.118

    Article  PubMed  CAS  Google Scholar 

  15. Kang JS, Krauss RS (2010) Muscle stem cells in developmental and regenerative myogenesis. Curr Opin Clin Nutr Metab Care 13:243–248. doi:10.1097/MCO.0b013e328336ea98

    Article  PubMed  CAS  Google Scholar 

  16. Katsuno M, Adachi H, Kume A, Li M, Nakagomi Y, Niwa H, Sang C, Kobayashi Y, Doyu M, Sobue G (2002) Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron 35:843–854

    Article  PubMed  CAS  Google Scholar 

  17. Kemppainen JA, Lane MV, Sar M, Wilson EM (1992) Androgen receptor phosphorylation, turnover, nuclear transport, and transcriptional activation. Specificity for steroids and antihormones. J Biol Chem 267:968–974

    PubMed  CAS  Google Scholar 

  18. Kennedy WR, Alter M, Sung JH (1968) Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait. Neurology 18:671–680

    Article  PubMed  CAS  Google Scholar 

  19. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–79. doi:10.1038/352077a0

    Article  PubMed  Google Scholar 

  20. Lieberman AP, Harmison G, Strand AD, Olson JM, Fischbeck KH (2002) Altered transcriptional regulation in cells expressing the expanded polyglutamine androgen receptor. Hum Mol Genet 11:1967–1976

    Article  PubMed  CAS  Google Scholar 

  21. Loro E, Rinaldi F, Malena A, Masiero E, Novelli G, Angelini C, Romeo V, Sandri M, Botta A, Vergani L (2010) Normal myogenesis and increased apoptosis in myotonic dystrophy type-1 muscle cells. Cell Death Differ 17:1315–1324. doi:10.1038/cdd.2010.33

    Article  PubMed  CAS  Google Scholar 

  22. Mariotti C, Castellotti B, Pareyson D, Testa D, Eoli M, Antozzi C, Silani V, Marconi R, Tezzon F, Siciliano G, Marchini C, Gellera C, Donato SD (2000) Phenotypic manifestations associated with CAG-repeat expansion in the androgen receptor gene in male patients and heterozygous females: a clinical and molecular study of 30 families. Neuromuscul Disord 10:391–397

    Article  PubMed  CAS  Google Scholar 

  23. Mo K, Razak Z, Rao P, Yu Z, Adachi H, Katsuno M, Sobue G, Lieberman AP, Westwood JT, Monks DA (2010) Microarray analysis of gene expression by skeletal muscle of three mouse models of Kennedy disease/spinal bulbar muscular atrophy. PLoS ONE 5:e12922. doi:10.1371/journal.pone.0012922

    Article  PubMed  Google Scholar 

  24. Monks DA, Johansen JA, Mo K, Rao P, Eagleson B, Yu Z, Lieberman AP, Breedlove SM, Jordan CL (2007) Overexpression of wild-type androgen receptor in muscle recapitulates polyglutamine disease. Proc Natl Acad Sci USA 104:18259–18264. doi:10.1073/pnas.0705501104

    Article  PubMed  CAS  Google Scholar 

  25. Montie HL, Cho MS, Holder L, Liu Y, Tsvetkov AS, Finkbeiner S, Merry DE (2009) Cytoplasmic retention of polyglutamine-expanded androgen receptor ameliorates disease via autophagy in a mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 18:1937–1950. doi:10.1093/hmg/ddp115

    Article  PubMed  CAS  Google Scholar 

  26. Nedelsky NB, Pennuto M, Smith RB, Palazzolo I, Moore J, Nie Z, Neale G, Taylor JP (2010) Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy. Neuron 67:936–952. doi:10.1016/j.neuron.2010.08.034

    Article  PubMed  CAS  Google Scholar 

  27. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621. doi:10.1146/annurev.neuro.29.051605.113042

    Article  PubMed  CAS  Google Scholar 

  28. Palazzolo I, Burnett BG, Young JE, Brenne PL, La Spada AR, Fischbeck KH, Howell BW, Pennuto M (2007) Akt blocks ligand binding and protects against expanded polyglutamine androgen receptor toxicity. Hum Mol Genet 16:1593–1603. doi:10.1093/hmg/ddm109

    Article  PubMed  CAS  Google Scholar 

  29. Palazzolo I, Stack C, Kong L, Musaro A, Adachi H, Katsuno M, Sobue G, Taylor JP, Summer CJ, Fischbeck KH, Pennuto M (2009) Overexpression of IGF-1 in muscle attenuates disease in a mouse model of spinal and bulbar muscular atrophy. Neuron 63:316–328. doi:10.1016/j.neuron.2009.07.019

    Article  PubMed  CAS  Google Scholar 

  30. Pallafacchina G, Blaauw B, Schiaffino S (2012) Role of satellite cells in muscle growth and maintenance of muscle mass. Nutr Metab Cardiovasc Dis. doi:10.1016/j.numecd.2012.02.002

  31. Parodi S, Pennuto M (2011) Neurotoxic effects of androgens in spinal and bulbar muscular atrophy. Front Neuroendocrinol 32:416–425. doi:10.1016/j.yfrne.2011.06.003

    Article  PubMed  CAS  Google Scholar 

  32. Poletti A (2004) The polyglutamine tract of androgen receptor: from functions to dysfunctions in motor neurons. Front Neuroendocrinol 25:1–26. doi:10.1016/j.yfrne.2004.03.001

    Article  PubMed  CAS  Google Scholar 

  33. Pradat PF, Barani A, Wanschitz J, Dubourg O, Lombes A, Bigot A, Mouly V, Bruneteau G, Salachas F, Lenglet T, Meininger V, Butler-Browne G (2011) Abnormalities of satellite cells function in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12:264–271. doi:10.3109/17482968.2011.566618

    Article  PubMed  CAS  Google Scholar 

  34. Ross CA (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron 35:819–822

    Article  PubMed  CAS  Google Scholar 

  35. Sakuma K, Yamaguchi A (2010) The functional role of calcineurin in hypertrophy, regeneration, and disorders of skeletal muscle. J Biomed Biotechnol 2010:721219. doi:10.1155/2010/721219

    Article  PubMed  Google Scholar 

  36. Sambataro F, Pennuto M (2012) Cell-autonomous and non-cell-autonomous toxicity in polyglutamine diseases. Prog Neurobiol 97:152–172. doi:10.1016/j.pneurobio.2011.10.003

    Article  PubMed  CAS  Google Scholar 

  37. Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23:160–170. doi:10.1152/physiol.00041.2007

    Article  CAS  Google Scholar 

  38. Sandri M, Carraro U (1999) Apoptosis of skeletal muscles during development and disease. Int J Biochem Cell Biol 31:1373–1390

    Article  PubMed  CAS  Google Scholar 

  39. Schmidt BJ, Greenberg CR, Allingham-Hawkins DJ, Spriggs EL (2002) Expression of X-linked bulbospinal muscular atrophy (Kennedy disease) in two homozygous women. Neurology 59:770–772

    Article  PubMed  Google Scholar 

  40. Sinha-Hikim I, Taylor WE, Gonzalez-Cadavid NF, Zheng W, Bhasin S (2004) Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment. J Clin Endocrinol Metab 89:5245–5255. doi:10.1210/jc.2004-0084

    Article  PubMed  CAS  Google Scholar 

  41. Sinha-Hikim I, Artaza J, Woodhouse L, Gonzalez-Cadavid N, Singh AB, Lee MI, Storer TW, Casaburi R, Shen R, Bhasin S (2002) Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am J Physiol Endocrinol Metab 283:E154–E164. doi:10.1152/ajpendo.00502.2001

    PubMed  CAS  Google Scholar 

  42. Sobue G, Hashizume Y, Mukai E, Hirayama M, Mitsuma T, Takahashi A (1989) X-linked recessive bulbospinal neuronopathy. A clinicopathological study. Brain 112(Pt 1):209–232

    Article  PubMed  Google Scholar 

  43. Soraru G, D’Ascenzo C, Polo A, Palmieri A, Baggio L, Vergani L, Gellera C, Moretto G, Pegoraro E, Angelini C (2008) Spinal and bulbar muscular atrophy: skeletal muscle pathology in male patients and heterozygous females. J Neurol Sci 264:100–105. doi:10.1016/j.jns.2007.08.012

    Article  PubMed  CAS  Google Scholar 

  44. Sorenson EJ, Klein CJ (2007) Elevated creatine kinase and transaminases in asymptomatic SBMA. Amyotroph Lateral Scler 8:62–64. doi:10.1080/17482960600765040

    Article  PubMed  CAS  Google Scholar 

  45. Vergani L, Martinuzzi A, Carelli V, Cortelli P, Montagna P, Schievano G, Carrozzo R, Angelini C, Lugaresi E (1995) MtDNA mutations associated with Leber’s hereditary optic neuropathy: studies on cytoplasmic hybrid (cybrid) cells. Biochem Biophys Res Commun 210:880–888. doi:10.1006/bbrc.1995.1740

    Article  PubMed  CAS  Google Scholar 

  46. Wannenes F, Caprio M, Gatta L, Fabbri A, Bonini S, Moretti C (2008) Androgen receptor expression during C2C12 skeletal muscle cell line differentiation. Mol Cell Endocrinol 292:11–19. doi:10.1016/j.mce.2008.05.018

    Article  PubMed  CAS  Google Scholar 

  47. Yu Z, Wang AM, Robins DM, Lieberman AP (2009) Altered RNA splicing contributes to skeletal muscle pathology in Kennedy disease knock-in mice. Dis Model Mech 2:500–507. doi:10.1242/dmm.003301

    Article  PubMed  CAS  Google Scholar 

  48. Yu Z, Dadgar N, Albertelli M, Gruis K, Jordan C, Robins DM, Lieberman AP (2006) Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model. J Clin Invest 116:2663–2672. doi:10.1172/JCI28773

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Egle Perissinotto at University of Padova for statistical analysis, Dr. Emiliano Pena for the collaboration in tissue culture. We are grateful to Prof. Stefano Schiaffino and Dr. Stefano Ciciliot at Venetian Institute of Molecular Medicine for the comments and assistance in discussion, to Dr. Flaviano Favaro and Dr. Diego Faggian at Azienda Ospedale Padova for the kind and efficient collaboration for IL-4 detection. Work supported by Association Française contre les Myopathies (14073 and 14927 to GS, 14631 to LV), Telethon-Italy (GGP10145 to LV; GGP10037 to MP), Progetto d’Ateneo-Università di Padova (to GS). AM was supported by University of Padova, Italy.

Conflict of interest

MP received support from Siena Biotech (Italy).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gianni Sorarù or Lodovica Vergani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2013_1122_MOESM1_ESM.tif

Supplementary Figure 1. Phosphorylated Akt/Akt ratio in DHT-treated myoblasts and T10 myotubes. (a) Representative WB analysis for phosphorylated Akt (pAkt) and Akt in total cell lysates from DHT-treated myoblasts and T10 myotubes. (b) Ratio of pAkt/total Akt in SBMA myoblasts and T10 myotubes is similar to control. The diagram represents the values expressed as mean ± SD of three independent experiments. The number of single lines studied is given in brackets (TIFF 1180 kb)

401_2013_1122_MOESM2_ESM.tif

Supplementary Figure 2. Apoptotic features in DHT-treated T10 myotubes. (a) Representative images of TUNEL assay. Scale bar, 15 μm. (b) Similar number of TUNEL positive nuclei per myotubes in control and SBMA myotubes; values were obtained in at least 50 myotubes/cell line. The number of single lines studied is given in brackets (TIFF 1724 kb)

Supplementary material 3 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malena, A., Pennuto, M., Tezze, C. et al. Androgen-dependent impairment of myogenesis in spinal and bulbar muscular atrophy. Acta Neuropathol 126, 109–121 (2013). https://doi.org/10.1007/s00401-013-1122-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1122-9

Keywords

Navigation