Skip to main content
Log in

Dynamic simulation of non-spherical particulate suspensions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Particle-level simulation has been employed to investigate rheology and microstructure of non-spherical particulate suspensions in a simple shear flow. Non-spherical particles in Newtonian fluids are modeled as three-dimensional clusters of neutrally buoyant, non-Brownian spheres linked together by Hookean-type constraint force. Rotne–Prager correction to velocity disturbance has been employed to account for far-field hydrodynamic interactions. An isolated rod-like particle in simple shear flow exhibits a periodic orientation distribution, commonly referred to as Jeffery orbit. Lubrication-like repulsive potential between clusters have been included in simulation of rod-like suspensions at various aspect ratios over dilute to semi-dilute volume fractions. Shear viscosity evaluated by orientation distribution qualitatively agrees with one obtained by direct computation of shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anczurowski E, Mason SG (1967) The kinetics of flowing dispersions III. Equilibrium orientations of rods and discs (experimental). J Colloid Interface Sci 23:533–546

    Article  Google Scholar 

  • Beenakker CWJ (1986) Ewald sum of the Rotne–Prager tensor. J Chem Phys 85:1581–1582

    Article  CAS  ADS  Google Scholar 

  • Bretherton FP (1962) The motion of rigid particles in a shear flow at low reynolds number. J Fluid Mech 14:284–304

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Claeys IL, Brady JF (1993a) Suspensions of prolate spheroids in stokes flow. Part 1. Dynamics of a finite number of particles in an unbounded fluid. J Fluid Mech 251:411–442

    Article  MATH  CAS  ADS  Google Scholar 

  • Claeys IL, Brady JF (1993b) Suspensions of prolate spheroids in stokes flow. Part 2. Statistically homogeneous dispersions. J Fluid Mech 251:443–477

    Article  CAS  ADS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, London

    Google Scholar 

  • Fan XJ, Phan-Thien N, Zheng R (1998) A direct simulation of fibre suspensions. J Non-Newton Fluid Mech 74:113–135

    Article  MATH  CAS  Google Scholar 

  • Folgar F, Tucker CL (1984) Orientation behavior of fibers in concentrated suspensions. J Reinf Plast Compos 3:98–119

    Article  CAS  Google Scholar 

  • Hinch EJ, Leal LG (1972) The effect of brownian motion on the rheological properties of a suspension of non-spherial particles. J Fluid Mech 52:683–712

    Article  MATH  ADS  Google Scholar 

  • Jeffery GB (1922) Motion of ellipsoidal paritcles immersed in a viscous fluid. Proc R Soc Lond Ser A 102:161–179

    Article  ADS  Google Scholar 

  • Joung CG (2006) Dynamic simulation of arbitrarily shaped particles in shear flow. Rheol Acta 46:143–152

    Article  Google Scholar 

  • Kim S, Karilla SJ (1991) Microhydrodynamics. Butterworth-Heinemann, London

    Google Scholar 

  • Kutteh R (2003) Stokesian dynamics of nonspherical particles, chains and aggregates. J Chem Phys 119(17):9280–9294

    Article  CAS  ADS  Google Scholar 

  • Lindstrom SB, Uesaka T (2008) Simulation of semidilute suspensions of non-brownian fibers in shear flow. J Chem Phys 128:024901–024914

    Article  Google Scholar 

  • Martys NS (2005) Study of a dissipative particle dynamics based approach for modeling suspensions. J Rheol 49(2):401–424

    Article  CAS  ADS  Google Scholar 

  • Meng Q, Higdon JJ (2008) Large scale dynamic simulation of plate-like particle suspensions. Part I: non-Brownian simulation. J Rheol 52(1):1–36

    Article  CAS  ADS  Google Scholar 

  • O’Brien RW (1979) A method for the calculation of the effective transport properties of suspensions of interacting particles. J Fluid Mech 91:17–39

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Petrich MP, Koch DL, Cohen C (2000) An experimental determination of the stress-microstructure relationship in semi-concentrated fiber suspensions. J Non-Newton Fluid Mech 95:101–133

    Article  CAS  Google Scholar 

  • Sierou A, Brady JF (2002) Rheology and microstructure in concentrated noncolloidal suspensions. J Rheol 46:1031–1056

    Article  CAS  ADS  Google Scholar 

  • Skjetne P, Ross RF, Klingenberg DJ (1997) Simulation of single fiber dynamics. J Chem Phys 6:2108–2121

    Article  ADS  Google Scholar 

  • Stover CA, Koch DL, Cohen C (1992) Observations of fibre orientation in simple shear flow of semi-dilute suspensions. J Fluid Mech 238:277–296

    Article  CAS  ADS  Google Scholar 

  • Tirado MM, Martinez CL, de la Torre JG (1984) Comparison of theories for the translational and rotational diffusion coefficients of rod-like macromolecules. Application to short dna fragments. J Chem Phys 4:2047–2052

    Google Scholar 

  • Trevelyan BJ, Mason SG (1951) Particle motion in sheared suspensions. J Colloid Sci 6:354–367

    Article  CAS  Google Scholar 

  • van der Kooij FM, Boek ES, Philipse AP (2001) Rheology of dilute suspensions of hard platelike colloids. J Colloid Sci 235:344–349

    Article  Google Scholar 

  • Yamamoto S, Matsuoka T (1993) A method for dynamic simulation of rigid and flexible fibers in a flow field. J Chem Phys 98(1):644–650

    Article  ADS  Google Scholar 

  • Yamamoto S, Matsuoka T (1995) Dynamic simulation of fiber suspensions in shear flow. J Chem Phys 102(5):2254–2260

    Article  CAS  ADS  Google Scholar 

  • Yamamoto S, Matsuoka T (1997) Dynamic simulation of a platelike particle dispersed system. J Chem Phys 107(8):3300–3308

    Article  CAS  ADS  Google Scholar 

  • Yamane Y, Kaneda Y, Doi M (1994) Numerical simulation of semi-dilute suspensions of rodlike particles in shear flow. J Non-Newton Fluid Mech 54:405–421

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Australian Research Council (Discovery Project no. DP0666004). The authors are grateful for helpful comments by Prof. Roger I. Tanner, Prof. Xijun Fan, Dr. Clint Joung, and Mr. Erwan Bertevas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakorn Kittipoomwong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kittipoomwong, P., See, H. & Mai-Duy, N. Dynamic simulation of non-spherical particulate suspensions. Rheol Acta 49, 597–606 (2010). https://doi.org/10.1007/s00397-009-0412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0412-6

Keywords

Navigation