Skip to main content
Log in

Facile fabrication of multihollow polymer microspheres via novel two-step assembly of P(St-co-nBA-co-AA) particles

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A novel two-step assembly method was found and was used to fabricate special multihollow polymer microspheres. Firstly, monodisperse colloidal particles of poly(styrene-co-(n-butyl acrylate)-co-acrylic acid) (P(St-co-nBA-co-AA)) were synthesized by soap-free emulsion polymerization and the obtained emulsion was transferred to 1-octanol to form colloidosomes which were stabilized by Span 80 and the colloidal particles via assembling at the interface of water/oil. Secondly, the multihollow polymer microspheres were successfully fabricated by heat aggregation and fusion of the aforementioned colloidosomes and colloidal particles. The two-step assembly mechanism was revealed and explained based on the morphologies of multihollow polymer microspheres formed under different emulsifier amounts and sintering conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Velev O, Furusawa K, Nagayama K (1996) Assembly of latex particles by using emulsion droplets as templates. 1. Microstructured hollow spheres. Langmuir 12:2374–2384

    Article  CAS  Google Scholar 

  2. Velev O, Furusawa K, Nagayama K (1996) Assembly of latex particles by using emulsion droplets as templates. 2. Ball-like and composite aggregates. Langmuir 12:2385–2391

    Article  CAS  Google Scholar 

  3. Velev O, Nagayama K (1997) Assembly of latex particles by using emulsion droplets. 3. Reverse (water in oil) system. Langmuir 13:1856–1859

    Article  CAS  Google Scholar 

  4. Dinsmore A, Hsu MF, Nikolaides M, Marquez M, Bausch A, Weitz D (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298:1006–1009

  5. Yow HN, Routh AF (2008) Release profiles of encapsulated actives from colloidosomes sintered for various durations. Langmuir 25:159–166

    Article  Google Scholar 

  6. Lawrence DB, Cai T, Hu Z, Marquez M, Dinsmore A (2007) Temperature-responsive semipermeable capsules composed of colloidal microgel spheres. Langmuir 23:395–398

    Article  CAS  Google Scholar 

  7. Wang C, Liu H, Gao Q, Liu X, Tong Z (2007) Facile fabrication of hybrid colloidosomes with alginate gel cores and shells of porous CaCO3 microparticles. ChemPhysChem 8:1157–1160

  8. Cayre OJ, Noble PF, Paunov VN (2004) Fabrication of novel colloidosome microcapsules with gelled aqueous cores. J Mater Chem 14:3351–3355

    Article  CAS  Google Scholar 

  9. Thompson KL, Armes S, Howse J, Ebbens S, Ahmad I, Zaidi J, York D, Burdis J (2010) Covalently cross-linked colloidosomes. Macromolecules 43:10466–10474

  10. Walsh A, Thompson K, Armes S, York D (2010) Polyamine-functional sterically stabilized latexes for covalently cross-linkable colloidosomes. Langmuir 26:18039–18048

    Article  CAS  Google Scholar 

  11. Gong Y, Zhu AM, Zhang QG, Liu QL (2014) Colloidosomes from poly(N-vinyl-2-pyrrolidone)-coated poly(N-isopropylacrylamide-co-acrylic acid) microgels via UV crosslinking. RSC Adv 4:9445

    Article  CAS  Google Scholar 

  12. He X, Ge XW, Wang M, Zhang Z (2005) Polystyrene/melamine-formaldehyde hollow microsphere composite by self-assembling of latex particles at emulsion droplet interface. Polymer 46:7598–7604

    Article  CAS  Google Scholar 

  13. Bon SA, Cauvin S, Colver PJ (2007) Colloidosomes as micron-sized polymerisation vessels to create supracolloidal interpenetrating polymer network reinforced capsules. Soft Matter 3:194–199

    Article  CAS  Google Scholar 

  14. Keen PHR, Slater NKH, Routh AF (2012) Encapsulation of yeast cells in colloidosomes. Langmuir 28:1169–1174

    Article  CAS  Google Scholar 

  15. Sander JS, Studart AR (2014) Multiwalled functional colloidosomes made small and in large quantities via bulk emulsification. Soft Matter 10:60–68

    Article  CAS  Google Scholar 

  16. Taly V, Kelly BT, Griffiths AD (2007) Droplets as microreactors for high-throughput biology. ChemBioChem 8:263–272

    Article  CAS  Google Scholar 

  17. Augustin MA, Hemar Y (2009) Nano-and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev 38:902–912

    Article  CAS  Google Scholar 

  18. Bollhorst T, Grieb T, Rosenauer A, Fuller G, Maas M, Rezwan K (2013) Synthesis route for the self-assembly of submicrometer-sized colloidosomes with tailorable nanopores. Chem Mater 25:3464–3471

    Article  CAS  Google Scholar 

  19. Pan Y, Gao J, Zhang B, Zhang X, Xu B (2009) Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles. Langmuir 26:4184–4187

    Article  Google Scholar 

  20. Keen PH, Slater NK, Routh AF (2014) Encapsulation of amylase in colloidosomes. Langmuir 30:1939–1948

    Article  CAS  Google Scholar 

  21. Liu Y, Chen X, Xin J (2006) Silica nanoparticles-walled microcapsules. J Mater Sci 41:5399–5401

    Article  CAS  Google Scholar 

  22. Cayre OJ, Hitchcock J, Manga MS, Fincham S, Simoes A, Williams RA, Biggs S (2012) pH-responsive colloidosomes and their use for controlling release. Soft Matter 8:4717–4724

    Article  Google Scholar 

  23. Shahidan N, Liu R, Thaiboonrod S, Alexander C, Shakesheff KM, Saunders BR (2013) Hollow colloidosomes prepared using accelerated solvent evaporation. Langmuir 29:13676–13685

    Article  CAS  Google Scholar 

  24. Shah RK, Kim J-W, Weitz DA (2009) Monodisperse stimuli-responsive colloidosomes by self-assembly of microgels in droplets. Langmuir 26:1561–1565

    Article  Google Scholar 

  25. Yuan C, Zeng B, Yu S, Mao J, Chen X, Luo W, Xu Y, Chang F-C, Dai L (2014) An airflow-controlled solvent evaporation route to hollow microspheres and colloidosomes. RSC Adv 4:4796–4803

    Article  CAS  Google Scholar 

  26. You J-O, Rafat M, Auguste DT (2011) Cross-linked, heterogeneous colloidosomes exhibit pH-induced morphogenesis. Langmuir 27:11282–11286

    Article  CAS  Google Scholar 

  27. Gordon VD, Chen X, Hutchinson JW, Bausch AR, Marquez M, Weitz DA (2004) Self-assembled polymer membrane capsules inflated by osmotic pressure. J Am Chem Soc 126:14117–14122

    Article  CAS  Google Scholar 

  28. Song Y-K, Jo Y-H, Lim Y-J, Cho S-Y, Yu H-C, Ryu B-C, Lee S-I, Chung C-M (2013) Sunlight-induced self-healing of a microcapsule-type protective coating. ACS Appl Mater Interfaces 5:1378–1384

    Article  CAS  Google Scholar 

  29. White SR, Sottos N, Geubelle P, Moore J, Kessler MR, Sriram S, Brown E, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    Article  CAS  Google Scholar 

  30. Luo Y, Ye C (2012) Using nanocapsules as building blocks to fabricate organic polymer nanofoam with ultra low thermal conductivity and high mechanical strength. Polymer 53:5699–5705

    Article  CAS  Google Scholar 

  31. Wang H, Wang M, Ge X (2008) One-step fabrication of multihollow polystyrene particles from miniemulsion system with nonionic surfactant. Polymer 49:4974–4980

    Article  CAS  Google Scholar 

  32. Zhang H, Cooper A (2002) Synthesis of monodisperse emulsion-templated polymer beads by oil-in-water-in-oil (O/W/O) sedimentation polymerization. Chem Mater 14:4017–4020

    Article  CAS  Google Scholar 

  33. Yuan Q, Yang L, Wang M, Wang H, Ge X, Ge X (2009) The mechanism of the formation of multihollow polymer spheres through sulfonated polystyrene particles. Langmuir 25:2729–2735

    Article  CAS  Google Scholar 

  34. Kim J-W, Ko J-Y, Jun J-B, Chang I-S, Kang H-H, Suh K-D (2003) Multihollow polymer microcapsules by water-in-oil-in-water emulsion polymerization: morphological study and entrapment characteristics. Colloid Polym Sci 281:157–163

    Article  CAS  Google Scholar 

  35. Luz C, Coutinho F (2001) The influence of the diluent system on the porous structure formation of copolymers based on 2-vinylpyridine and divinylbenzene. Diluent system: II-n-heptane/toluene. Polymer 42:4931–4938

    Article  Google Scholar 

  36. Tan J, Li C, Zhou J, Yin C, Zhang B, Gu J, Zhang Q (2014) Fast and facile fabrication of porous polymer particles via thiol–ene suspension photopolymerization. RSC Adv 4:13334–13339

    Article  CAS  Google Scholar 

  37. Kobayashi H, Miyanaga E, Okubo M (2007) Preparation of multihollow polymer particles by seeded emulsion polymerization using seed particles with incorporated nonionic emulsifier. Langmuir 23:8703–8708

    Article  CAS  Google Scholar 

  38. Okubo M, Ichikawa K (1994) Production of multihollow polymer particles by the stepwise alkali/acid method IV. Acid treatment process. Colloid Polym Sci 272:933–937

    Article  CAS  Google Scholar 

  39. Okubo M, Ito A, Hashiba A (1996) Production of submicron-sized multihollow polymer particles having high transition temperatures by the stepwise alkali/acid method. Colloid Polym Sci 274:428–432

    Article  CAS  Google Scholar 

  40. Okubo M, Ito A, Kanenobu T (1996) Production of submicron-sized multihollow polymer particles by alkali/cooling method. Colloid Polym Sci 274:801–804

    Article  CAS  Google Scholar 

  41. Okubo M, Nakagawa T (1994) Formation of multihollow structures in crosslinked composite polymer particles. Colloid Polym Sci 272:530–535

    Article  CAS  Google Scholar 

  42. Okubo M, Nakamura M, Ito A (1997) Influence of the kind of alkali on the preparation of multihollow polymer particles by the alkali/cooling method. J Appl Polym Sci 64:1947–1951

    Article  CAS  Google Scholar 

  43. Okubo M, Ichikawa K, Fujimura M (1991) Production of multi-hollow polymer microspheres by stepwise alkali/acid method II. Alkali treatment process. Colloid Polym Sci 269:1257–1262

    Article  CAS  Google Scholar 

  44. Okada M, Matoba T, Okubo M (2003) Influence of nonionic emulsifier included inside carboxylated polymer particles on the formation of multihollow structure by the alkali/cooling method. Colloid Polym Sci 282:193–197

    Article  CAS  Google Scholar 

  45. Li C, Zhang B, Tan J, Fan X, Liu Y, Zhang H, Zhang Q (2014) Colloidal particles with various glass transition temperatures: preparation, assembly, and the properties of stop bands under heat treatment. J Mater Sci 49:2653–2661

    Article  CAS  Google Scholar 

  46. Laïb S, Routh AF (2008) Fabrication of colloidosomes at low temperature for the encapsulation of thermally sensitive compounds. J Colloid Interface Sci 317:121–129

    Article  Google Scholar 

  47. Hentschel J, Kushner AM, Ziller J, Guan Z (2012) Self-healing supramolecular block copolymers. Angew Chem 124:10713–10717

    Article  Google Scholar 

  48. Luo Y, Wang X, Zhu Y, Li B-G, Zhu S (2010) Polystyrene-block-poly (n-butyl acrylate)-block-polystyrene triblock copolymer thermoplastic elastomer synthesized via RAFT emulsion polymerization. Macromolecules 43:7472–7481

    Article  CAS  Google Scholar 

  49. Wang W, Zhang Q (2012) Synthesis of block copolymer poly (n-butyl acrylate)-b-polystyrene by DPE seeded emulsion polymerization with monodisperse latex particles and morphology of self-assembly film surface. J Colloid Interface Sci 374:54–60

    Article  CAS  Google Scholar 

  50. Kralchevsky PA, Nagayama K (2000) Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv Colloid Interf Sci 85:145–192

    Article  CAS  Google Scholar 

  51. Rosenzweig N, Narkis M (1981) Observation and analysis technique for studying sintering of polymeric particles. J Appl Polym Sci 26:2787–2789

    Article  CAS  Google Scholar 

  52. Mazur S, Beckerbauer R, Buckholz J (1997) Particle size limits for sintering polymer colloids without viscous flow. Langmuir 13:4287–4294

    Article  CAS  Google Scholar 

  53. Bellehumeur CT, Kontopoulou M, Vlachopoulos J (1998) The role of viscoelasticity in polymer sintering. Rheol Acta 37:270–278

    Article  CAS  Google Scholar 

  54. Routh AF, Russel WB (1999) A process model for latex film formation: limiting regimes for individual driving forces. Langmuir 15:7762–7773

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by National Natural Science Foundation of China (no. 51173146, 51433008), the Doctorate Foundation of Northwestern Polytechnical University (CX201515), and Basic Research Fund of Northwestern Polytechnical University (3102014JCQ01094, 3102014ZD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Tan, J., Liu, Y. et al. Facile fabrication of multihollow polymer microspheres via novel two-step assembly of P(St-co-nBA-co-AA) particles. Colloid Polym Sci 293, 993–1001 (2015). https://doi.org/10.1007/s00396-015-3501-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3501-3

Keywords

Navigation