Skip to main content
Log in

Epoxy resin/poly(ethylene oxide) (PEO) and poly(ε-caprolactone) (PCL) blends cured with 1,3,5-trihydroxybenzene: miscibility and intermolecular interactions

  • Original Paper
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract.

Epoxy resin (ER)/poly(ethylene oxide) (PEO) and/or poly(ε-caprolactone) (PCL) blends cured with 1,3,5-trihydroxybenzene (THB) were prepared via the in situ curing reaction of epoxy monomers in the presence of PEO and/or PCL, which started from the initially homogeneous mixtures of DGEBA, THB and PEO and/or PCL. The miscibility and the intermolecular specific interactions in the thermosetting polymer blends were investigated by means of differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The two systems displayed single and composition-dependant glass transition temperatures (Tgs), indicating the full miscibility of the thermosetting blends. The experimental Tgs of the blends can be well accounted for by Gordon-Taylor and Kwei equations, respectively. The Tg-composition behaviors were compared with those of poly(hydroxyether of bisphnol A) (Phenoxy) blends with PEO and PCL. It is noted that the formation of crosslinked structure has quite different effects on miscibility and intermolecular hydrogen bonding interactions for the thermosetting polymer blends. In ER/PEO blends, the strength of the intermolecular hydrogen bonding interactions is weaker than that of the self-association in the control epoxy resin, which is in marked contrast to the case of Phenoxy/PEO blends. This suggests that the crosslinking reduces the intermolecular hydrogen bonding interactions, whereas the intermolecular hydrogen bonding interactions were not significantly reduced by the formation of the crosslinking structure in ER/PCL blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. Paul DR, Newman S (eds) (1978) Polymer blends, vols 1 and 2. Academic, New York

  2. Olabisi O, Robeson LM, Shaw MT (1979) Polymer–polymer miscibility. Academic Press, New York

  3. Utracki LA (1989) Polymer alloys and blends: thermodynamics and rheology. Hanser

    Google Scholar 

  4. 4 Coleman MM, Graf JF, Painter PC (1991) Specific interaction and the miscibility and polymer blends. Technomic Publishing, Lancaster, PA

  5. Coleman MM, Painter PC (1995) Prog Polym Sci 10:1

    Article  Google Scholar 

  6. Noshay A, Robeson LM (1974) J Polym Sci, Part A: Polym Chem 12:689

    Google Scholar 

  7. Clark JN, Daly JH, Garton A (1984) J Appl Polym Sci 29:3381

    Article  CAS  Google Scholar 

  8. Guo Q, Peng X, Wang Z (1989) Polym Bull 21:593

    CAS  Google Scholar 

  9. Guo Q, Peng X, Wang Z (1991) Polymer 32:53

    CAS  Google Scholar 

  10. Luo X, Zheng S, Zhang N, Ma D (1994) Polymer 35:2619

    CAS  Google Scholar 

  11. Zheng S, Zhang N, Luo X, Ma D (1995) Polymer 36:3609

    Article  CAS  Google Scholar 

  12. Mucha M (1994) Colloid Polym Sci 272:1090

    CAS  Google Scholar 

  13. Zheng H, Zheng S, Guo Q (1997) J Polym Sci, Part A: Polym Chem 35:3161

    Google Scholar 

  14. Zheng H, Zheng S, Guo Q (1997) J Polym Sci, Part A: Polym Chem 35:3169

    Google Scholar 

  15. Zhong Z, Guo Q (1997) Polymer 38:279

    Article  CAS  Google Scholar 

  16. Zhong Z, Guo Q(1997) Polymer 38:279

    Article  CAS  Google Scholar 

  17. Oyanguren PA, Frontini PM, Williams RJJ, Girard-Reydet E, Pascault JP (1996) Polymer 37:3079

    Article  CAS  Google Scholar 

  18. Oyanguren PA, Frontini P M, Williams RJJ, Vigier G, Pascault JP (1996) Polymer 37:3087

    Article  CAS  Google Scholar 

  19. Guo Q, Zheng H (1999) Polymer 40:637

    Article  CAS  Google Scholar 

  20. Guo Q, Zheng H (1999) J Appl Polym Sci 74:332

    Google Scholar 

  21. Chen JL, Chang FC (1999) Macromolecules 32:5348

    Article  CAS  Google Scholar 

  22. Remiro PM, Cortazar MM, Calahorra M E, Calafel MM (2001) Macromol Chem & Phys 202:1077

    Google Scholar 

  23. Guo Q, Harrats C, Groeninckx G, Koch MHJ (2001) Polymer 42:4127

    Article  CAS  Google Scholar 

  24. Guo Q, Harrats C, Groeninckx G, Reynaers H, Koch MHJ (2001) Polymer 42:6031

    Article  CAS  Google Scholar 

  25. Guo Q, Groeninckx G (2001) Polymer 42:8647

    Article  CAS  Google Scholar 

  26. Zheng S, Wang H, Luo X, Ma D (1995) Chinese J Polym Sci 13:46

    Google Scholar 

  27. Mijovic J, Shen M, Sy JW, Mondragon I (2000) Macromolecules 33:5235

    Article  CAS  Google Scholar 

  28. Guo Q, Thomann R, Gronski W, Thurn-Albrecht T (2002) Macromolecules 35:3133

    Article  CAS  Google Scholar 

  29. Son PN, Weber CD (1973) J Appl Polym Sci 17:2415

    Google Scholar 

  30. Grubber RJ, Ahuja SK (1980) Polym Prep 21:235

    Google Scholar 

  31. Gagnebien D, Madec PJ, Marechal E (1985) Eur Polym J 21:273

    CAS  Google Scholar 

  32. Fox TG (1956) Bull Am Phys Soc 1:123

    CAS  Google Scholar 

  33. Gordon M, Taylor JS (1952) J Appl Chem 2:496

    Google Scholar 

  34. Couchman PR (1978) Macromolecules 11:1156

    CAS  Google Scholar 

  35. Belorgey G, Prud'homme RE (1982) J Polym Sci, Part B: Polym Phys 20:191

    Google Scholar 

  36. Belorgey G, Aubin M, Prud'homme RE (1982) Polymer 23:1051

    CAS  Google Scholar 

  37. Iriarte M, Iribarren JI, Etveberria A, Iruin JJ(1989) Polymer 30:1160

    CAS  Google Scholar 

  38. Li X, Hsu SL (1984) J Polym Sci, Part B: Polym Phys 22:1331

    Google Scholar 

  39. Zheng S, Jungnickel B-J (2000) J Polym Sci, Part B: Polym Phys 38:1250

    Google Scholar 

  40. Vidotte G, Levy DL, Kovacs AJ (1969) Kolloid Z Z Polym 230:289

    Google Scholar 

  41. Coleman MM, Moskala EJ (1983) Polymer 24:251

    CAS  Google Scholar 

  42. Purcell KF, Drago RS (1968) J Am Chem Soc 24:251

    Google Scholar 

  43. Coleman MM, Painter PC (1984) Appl Spectrosc Rev 20:225

    Google Scholar 

  44. Koleske JV, Lundberg RV (1969) J Polym Sci, Part B: Polym Phys 7:795

    Google Scholar 

  45. Coleman MM, Serman C , Painter PC (1987) Macromolecules 27:127

    Google Scholar 

  46. Coleman MM, Hu Y, Sobkowiak M, Painter PC (1998) J Polym Sci, Part B: Polym Phys 38:1597

    Google Scholar 

  47. Hu Y, Gamble V, Painter PC, Coleman PC (2002), Macromolecules 35:1289

  48. Crescezi V, Mazini G, Calzolari G, Borri C (1972) Eur Polym J 8:449

    Google Scholar 

  49. Kwei TK (1984) J Polym Sci, Polym Lett Edn 22:307

    Google Scholar 

  50. Kwei TK, Pearce EM, Pennacchia JR, Charton M (1987) Macromolecules 20:174

    Google Scholar 

  51. de Juana R, Cortázar M (1993) Macromolecules 26:1170

    Google Scholar 

  52. Lin AA, Kwei TK, Raiser A (1989) Macromolecules 22:4112

    CAS  Google Scholar 

Download references

Acknowledgement.

The author (S. Zheng) would like to acknowledge the Excellent Young Teachers Program (EYTP, project No. 2066) of Ministry of Education, P. R. China for the financial support. The author (Q. Guo) wishes to express his appreciation to the Natural Science Foundation of China for the award to Outstanding Young Scientists (No. 59525307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sixun Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, S., Lü, H., Chen, C. et al. Epoxy resin/poly(ethylene oxide) (PEO) and poly(ε-caprolactone) (PCL) blends cured with 1,3,5-trihydroxybenzene: miscibility and intermolecular interactions. Colloid Polym Sci 281, 1015–1024 (2003). https://doi.org/10.1007/s00396-003-0870-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0870-9

Keywords

Navigation