Skip to main content

Advertisement

Log in

A reconstruction of extratropical Indo-Pacific sea-level pressure patterns during the Medieval Climate Anomaly

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Subtropical and extratropical proxy records of wind field, sea level pressure (SLP), temperature and hydrological anomalies from South Africa, Australia/New Zealand, Patagonian South America and Antarctica were used to reconstruct the Indo-Pacific extratropical southern hemisphere sea-level pressure anomaly (SLPa) fields for the Medieval Climate Anomaly (MCA ~700–1350 CE) and transition to the Little Ice Age (LIA 1350–1450 CE). The multivariate array of proxy data were simultaneously evaluated against global climate model output in order to identify climate state analogues that are most consistent with the majority of proxy data. The mean SLP and SLP anomaly patterns derived from these analogues illustrate the evolution of low frequency changes in the extratropics. The Indo-Pacific extratropical mean climate state was dominated by a strong tropical interaction with Antarctica emanating from: (1) the eastern Indian and south-west Pacific regions prior to 1100 CE, then, (2) the eastern Pacific evolving to the central Pacific La Niña-like pattern interacting with a +ve SAM to 1300 CE. A relatively abrupt shift to –ve SAM and the central Pacific El Niño-like pattern occurred at ~1300. A poleward (equatorward) shift in the subtropical ridge occurred during the MCA (MCA–LIA transition). The Hadley Cell expansion in the Australian and Southwest Pacific, region together with the poleward shift of the zonal westerlies is contemporaneous with previously reported Hadley Cell expansion in the North Pacific and Atlantic regions, and suggests that bipolar climate symmetry was a feature of the MCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allan RJ, Haylock MR (1993) Circulation features associated with the winter rainfall decrease in southwestern Australia. J Clim 6:1356–1367

    Google Scholar 

  • Aravena JC, Luckman BH (2008) Spatio-temporal rainfall patterns in Southern South America. Int J Climatol. doi:10.1002/joc.1761

    Google Scholar 

  • Arblaster J, Meehl G (2006) Contributions of external forcings to southern annular mode trends. J Clim 19:2896–2905

    Google Scholar 

  • Ashok K, Behera S, Rao S, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006jc003798

    Google Scholar 

  • Barr C (2010) Droughts and flooding rains: a fine-resolution reconstruction of climatic variability in western Victoria, Australia, over the last 1500 years. PhD thesis, University of Adelaide, Adelaide

  • Bertler NAN, Mayewski PA, Carter L (2011) Cold conditions in Antarctica during the little ice age—implications for abrupt climate change mechanisms. Earth Planet Sci Lett 308:41–51

    Google Scholar 

  • Bradley RS, Hughes MK, Diaz HF (2003) Climate in medieval time. Science 302:404–405. doi:10.1126/science.1090372

    Google Scholar 

  • Bromwich DH, Carrasco JF, Liu Z, Tzeng RT (1993) Hemispheric atmospheric variations and oceanographic impacts associated with katabatic surges across the Ross Ice Shelf, Antarctica. J Geophys Res 98(D7):13045–13062

    Google Scholar 

  • Brooke B, Ryan D, Pietsch T, Olley J, Douglas G, Packett R, Radke L, Flood P (2008) Influence of climate fluctuations and changes in catchment land use on late holocene and modern beach-ridge sedimentation on a tropical macrotidal coast: Keppel Bay, Queensland, Australia. Mar Geol 251:195–208

    Google Scholar 

  • Browning S, Goodwin ID (2013) Large scale influences on the evolution of winter subtropical maritime cyclones affecting Australia’s east coast. Mon Weather Rev. doi:10.1175/MWR-D-12-00312.1

    Google Scholar 

  • Büntgen U, Franke J, Frank D, Wilson R, González-Rouco F, Esper J (2010) Assessing the spatial signature of European climate reconstructions. Clim Res 41:125–130

    Google Scholar 

  • Cai W, van Rensch P, Cowan T, Hendon HH (2011a) Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J Clim 24. doi:10.1175/2011JCLI4129.1

  • Cai W, van Rensch P, Cowan T (2011b) Influence of global-scale variability on the subtropical ridge over southeast Australia. J Clim 24:6035–6053. doi:10.1175/2011JCLI4149.1

    Google Scholar 

  • Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9:2190–2196. doi:10.1175/1520-0442

    Google Scholar 

  • Cobb K, Charles C, Cheng H, Edwards R (2003) El Niño/Southern oscillation and tropical Pacific climate during the last millennium. Nature 424:271–276

    Google Scholar 

  • Cobb KM, Charles C, Cheng H, Edwards RL (2011) Fossil coral records of tropical Pacific climate over the last millennium: relationship to external forcing. Proceedings of the AGU Fall Meeting, San Francisco, December, 2011

  • Cohen AL, Parkington JE, Brundrit GB, van der Merwe NJ (1992) A holocene marine climate record in mollusk shells from the southwest African coast. Quat Res 38:379–385

    Google Scholar 

  • Cohen TJ, Nanson GC, Jansen JD, Jones BG, Jacobs Z, Treble P, Price DM, May J-H, Smith AM, Ayliffe LK, Hellstrom JC et al (2011) Continental aridification and the vanishing of Australia’s megalakes. Geology 39(2):167–170. doi:10.1130/G31518.1

    Google Scholar 

  • Cohen TJ, Nanson GC, Jansen JD, Gliganic LA, May J-H, Lasren L, Goodwin ID, Browning S, Price DM (2012) A pluvial episode identified in arid Australia during the medieval climatic anomaly. Quat Sci Rev 56:167–171. doi:10.1016/j.quascirev.2012.09.021

    Google Scholar 

  • Conroy JL, Overpeck JT, Cole JE, Shanahan TM, Steinitz-Kannan M (2008) Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat Sci Rev 27:1166–1180

    Google Scholar 

  • Cook E, Palmer J, D’arrigo R (2002) Evidence for a “medieval warm period”in a 1, 100 year tree-ring reconstruction of past austral summer temperatures in New Zealand. Geophys Res Lett 29:1667. doi:10.1029/2001gl014580

    Google Scholar 

  • Cook E, Buckley BM, Palmer JG, Fenwick P, Peterson MJ, Boswijk G, Fowler A et al (2006) Millennia-long tree-ring records from Tasmania and New Zealand: a basis for modelling climate variability and forcing, past, present and future. J Quat Sci 21: 689–699 ISSN 0267-8179

    Google Scholar 

  • Delmotte M, Masson V, Jouzel J, Morgan VI (2000) A seasonal deuterium excess signal at Law Dome, coastal eastern Antarctica: a southern ocean signature. J Geophys Res 105:7187–7197. doi:10.1029/1999jd901085

    Google Scholar 

  • Diaz HF, Trigo R, Hughes MK, Mann ME, Xoplaki E, Barriopedro D (2011) Spatial and temporal characteristics of climate in medieval times revisited. Bull Am Meteorol Soc 92:1487–1500

    Google Scholar 

  • Ding Q, Steig EJ, Battisti DS, Kuttel M (2011) Winter warming in West Antarctica caused by central tropical Pacific warming. Nat Geosci 4:398–403. doi:10.1038/ngeo1129

    Google Scholar 

  • Ding Q, Steig EJ, Battisti DS, Wallace JM (2012) Influence of the tropics on the southern annular mode. J Clim 25:6330–6348. doi:10.1175/JCLI-D-11-00523.1

    Google Scholar 

  • Donders TH, Wagner F, Visscher H (2006) Late pleistocene and holocene subtropical vegetation dynamics recorded in perched lake deposits on Fraser Island, Queensland, Australia. Palaeogeogr Palaeoclimatol Palaeoecol 241:417–439

    Google Scholar 

  • Ekblom A, Stabel B (2008) Paleohydrology of Lake Nhaucati (southern Mozambique), ~400 AD to present. J Paleolimnol 40:1127–1141

    Google Scholar 

  • Fogt RL, Bromwich DH (2006) Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J Clim 19:979–997

    Google Scholar 

  • Fogt RL, Bromwich DH, Hines KM (2011) Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim Dyn 36:1555–1576. doi:10.1007/s00382-010-0905-0

    Google Scholar 

  • Folland CK, Renwick JA, Salinger MJ, Mullan B (2002) Relative influences of the the interdecadal Pacific oscillation and ENSO on the South Pacific Convergence Zone. Geophys Res Lett 29(13):1643. doi:10.1029/2001GL014201

    Google Scholar 

  • Fowler AM, Boswijk G, Lorrey AM, Gergis J, Pyrie M, McCloskey SPJ, Palmer JG, Wunder J (2012) Multi-centennial ENSO insights from New Zealand forest giants. Nat Clim Chang. doi:10.1038/NCLIMATE1374

    Google Scholar 

  • Franke J, González-Rouco JF, Frank D, Graham NE (2010) 200 Years of European temperature variability: insights from and tests of the proxy surrogate reconstruction analog method. Clim Dyn 37:133–150. doi:10.1007/s00382-010-0802-6

    Google Scholar 

  • Goodwin ID (2005) A mid-shelf wave direction climatology for south-eastern Australia, and its relationship to the El Niño—Southern oscillation, since 1877 AD. Int J Climatol 25:1715–1729

    Google Scholar 

  • Goodwin ID, Harvey N (2008) Subtropical sea-level history from coral microatolls in the Southern Cook Islands, since 300 AD. Mar Geol 253:14–25

    Google Scholar 

  • Goodwin I, van Ommen T, Curran M, Mayewski P (2004) Mid latitude winter climate variability in the South Indian and southwest Pacific regions since 1300 AD. Clim Dyn 22:783–794

    Google Scholar 

  • Goodwin I, Stables M, Olley J (2006) Wave climate, sand budget and shoreline alignment evolution of the Iluka-Woody Bay sand barrier, northern New South Wales, Australia, since 3000 yr BP. Mar Geol 226:127–144

    Google Scholar 

  • Goosse H, Renssen H, Timmermann A, Bradley RS, Mann ME (2006) Using paleoclimate proxy-data to select optimal realisations in an ensemble of simulations of the climate of the past millennium. Clim Dyn 27:165–184. doi:10.1007/s00382-006-0128-6

    Google Scholar 

  • Graham NE et al (2007) Tropical Pacific—mid-latitude teleconnections in medieval times. Clim Chang 83:241–285. doi:10.1007/s10584-007-9239-2

    Google Scholar 

  • Graham NE, Ammann CM, Fleitmann D, Cobb KM, Luterbacher J (2010) Support for global climate reorganization during the “medieval climate anomaly”. Clim Dyn. doi:10.1007/s00382-010-0914-z

  • Griffiths ML, Kimbrough A, Gagan MK, Drysdale RN, Cole JE, Johnson KR, Zhao J-X, Hellstrom J, Ayliffe L, Hantoro W (2011) Towards an annually resolved reconstruction of Info-Pacific hydrology over the past 2000 years. Proceedings of the AGU Fall Meeting, San Francisco, December, 2011

  • Hall A, Visbeck M (2002) Synchronous variability in the southern hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J Clim 15:3043–3057

    Google Scholar 

  • Hall BL, Koffman T, Denton GH (2010) Reduced ice extent on the western Antarctic Peninsula at 700 to 970 cal Yr BP. Geology 38:635–638. doi:10.1130/G309321

    Google Scholar 

  • Holmgren K, Karlén W, Lauritzen SE, Lee-Thorp JA, Partridge TC, Piketh S, Repinski P, Stevenson C, Svanered O, Tyson PD (1999) 3000-Year high-resolution record of palaeoclimate for North-Eastern South Africa. Holocene 9(3):295–309

    Google Scholar 

  • Hopkins LC, Holland GJ (1997) Australian heavy-rain days and associated east coast cyclones: 1958–92. J Clim 10:621–635. doi:10.1175/15200442(1997)010<0621:AHRDAA>2.0.CO;2

    Google Scholar 

  • Jones P et al (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49

    Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meterol Soc 77:437–471

    Google Scholar 

  • Karoly D (1989) Southern hemisphere circulation features associated with El Niño-Southern oscillation events. J Clim 2:1239–1252

    Google Scholar 

  • Khider D, Stott LD, Emile-Geay J, Thunell R, Hammond DE (2011) Assessing El Niño oscillation variability over the past millennium. Paleoceanography 26:PA3222. doi:10.1029/2011PA002139

    Google Scholar 

  • Kidson JW (2000) An analysis of New Zealand synoptic types and their use in defining weather regimes. Int J Clim 20(3):299–316

    Google Scholar 

  • Kiladis GN, Mo K (1998) Interannual and intraseasonal variability in the southern hemisphere. In: Karoly DJ, Vincent DG (eds) Meteorology of the southern hemisphere. American Meteorological Society Monograph, Boston, p 410

    Google Scholar 

  • Knudsen M, Seidenkrantz M-S, Jacobsen BH, Kijupers A (2011) Tracking the Atlantic multidecadal oscillation through the last 8,000 years. Nat Commun 2:178. doi:10.1038/ncomms1186

    Google Scholar 

  • Kreutz K, Mayewski P, Pittalwala I, Meeker L, Twickler M, Whitlow S (2000) Sea level pressure variability in the Amundsen Sea region inferred from a West Antarctic glaciochemical record. J Geophys Res 105:4047–4059

    Google Scholar 

  • L’Hereux ML, Thompson DWJ (2006) Observed relationships between the El Niño-Southern oscillation and the extratropical zonal mean circulation. J Clim 19:276–287

    Google Scholar 

  • Lamb HH (1965) The early medieval warm epoch and its sequel. Palaeogeogr Palaeoclimatol Palaeoecol 1:13–37

    Google Scholar 

  • Lee-Thorp JA, Holmgren K, Lauritzen S-E, Linge H, Moberg A, Partridge TC, Stevenson C, Tyson PD (2001) Rapid climate shifts in the southern African interior throughout the mid to late holocene. Geophys Res Lett 28(23):4507–4510

    Google Scholar 

  • Linsley BK, Zhang P, Kaplan A, Howe SS, Wellington GM et al (2008) Interdecadal-decadal climate variability from multicoral oxygen isotope records in the South Pacific Convergence Zone region since 1650 AD. Paleoceanography 23:PA2219. doi:10.1029/2007pa001539

    Google Scholar 

  • Linsley BK, Rosenthal Y, Oppo DW (2010) Holocene evolution of the Indonesian through flow and the western Pacific warm pool. Nat Geosci 3:578–583

    Google Scholar 

  • Liu Z, Alexander M (2007) Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev Geophys 45:RG2005. doi:10.1029/2005RG000172

    Google Scholar 

  • Lorrey A, Fowler A, Salinger J (2007) Regional climate regime classification as a qualitative tool for interpreting multi-proxy palaeoclimate data spatial patterns: a New Zealand case study Palaeogeography. Palaeoclimatol Palaeoecol 253:407–433

    Google Scholar 

  • Lorrey A, Williams P, Salinger J, Martin T, Palmer J, Fowler A, Zhao J-X, Neil H (2008) Speleothem stable isotope records interpreted within a multi-proxy framework and implications for New Zealand palaeoclimate reconstruction. Quatern Int 187:52–75

    Google Scholar 

  • Lorrey AM, Fauchereau N, Stanton C, Chappell PR, Phipps SJ, Mackintosh A, Renwick JA, Goodwin I, Fowler AM (2013) The Little Ice Age climate of New Zealand reconstructed from Southern Alps cirque glaciers: a synoptic type approach. Clim Dyn. doi:10.1007/s00382-013-1876-8

  • Luterbacher J et al (2010) Circulation dynamics and its influence on European and Mediterranean January–April climate over the past half millennium: results and insights from instrumental data, documentary evidence and coupled climate models. Clim Chang 101:201–234. doi:10.1007/s10584-009-9782-0

    Google Scholar 

  • Lyons W, Tyler S, Wharton R Jr, McKnight D, Vaughn B et al (1998) A late holocene desiccation of Lake Hoare and Lake Fryxell, McMurdo dry Valleys, Antarctica. Antarct Sci 10:247–256

    Google Scholar 

  • MacDonald G, Case R (2005) Variations in the Pacific decadal oscillation over the past millennium. Geophys Res Lett 32:1–4

    Google Scholar 

  • Mann M, Zhang Z, Rutherford S, Bradley R, Hughes M, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260. doi:10.1126/science1177303

    Google Scholar 

  • Mattey D, Stephens M, Garcia_Anton E, Hoffmann D, Dredge JA, Fisher RE, Lowry D (2011) The nature of the medieval warm period—little ice ace Transition in an annually resolved speleothem record from Voli Voli Cave, Fiji. Proceedings of the AGU Fall Meeting, San Francisco, December, 2011

  • Mayewski PA, Rohling E, Stager JC et al (2004) Holocene climate variability. Quat Res 62:243–255

    Google Scholar 

  • Mayewski PA et al (2005) A 700 year record of southern hemisphere extratropical climate variability. Ann Glaciol 39:127–132

    Google Scholar 

  • Meehl A, Tebaldi C, Teng H, Peterson TC (2007) Current and future U.S. weather extremes and El Niño. Geophys Res Lett 34:L20704. doi:10.1029/2007GL031027

  • Mettam P, Tibby J, Barr C, Marshall JC (2011) Development of eighteen mile swamp, North Stradbroke Island: a palaeolimnological study. In: Arthington AH, Page TJ, Rose CW, Raghu S (eds) A place of sandhills: ecology, hydrogeomorphology and management of Queensland’s dune islands, Proceedings of the Royal Society of Queensland, vol 117

  • Miller AJ, Cayan DR, Barnett TP, Graham NE (1994) The 1976–77 climate shift of the Pacific Ocean. Oceanography 7:1–6

    Google Scholar 

  • Mo K, Higgins R (1998) The Pacific-South American modes and tropical convection during the southern hemisphere winter. Mon Weather Rev 126:1581–1596

    Google Scholar 

  • Mo K, Paegle J (2001) The Pacific-South American modes and their downstream effects. Int J Clim 21:1211–1229

    Google Scholar 

  • Mohtadi M, Romero O, Kaiser J, Hebbeln D (2007) Cooling of the southern high latitudes during the medieval period and its effect on ENSO. Quat Sci Rev 26:1055–1066

    Google Scholar 

  • Moy C, Dunbar R, Moreno P, Francois J-P, Villa-Martínez R, Mucciarone D, Guilderson T, Garreaud R (2008) Isotopic evidence for hydrologic change related to the westerlies in SW Patagonia, Chile, during the last millennium. Quat Sci Rev 27:1335–1349

    Google Scholar 

  • Mullan AB, Thompson CS (2006) Analogue forecasting of New Zealand climate anomalies. Int J Clim 26(4):485–504. doi:10.1002/joc1261

    Google Scholar 

  • Neukom R et al (2010) Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Clim Dyn. doi:10.1007/s00382-010-0793-3

    Google Scholar 

  • Newton A, Thunell R, Stott L (2006) Climate and hydrographic variability in the Indo-Pacific warm pool during the last millennium. Geophys Res Lett 33:L19710. doi:10.1029/2006gl027234

    Google Scholar 

  • Noon PE, Leng MJ, Jones VJ (2003) Oxygen-isotope (δ18O) evidence of Holocene hydrological changes at Signy Island, maritime Antarctica. Holocene 13:251–263. doi:10.1191/0959683603hl611rp

    Google Scholar 

  • Oglesby R, Feng S, Hu Q, Rowe C (2011) The role of the Atlantic multidecadal oscillation on medieval drought in North America: synthesizing results from proxy data and climate models. Glob Planet Chang. doi:10.1016/jglobplancha201107005

    Google Scholar 

  • Oppo DW, Rosenthal Y, Linsley BK (2009) 2,000-Year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool. Nature 460:1113–1116

    Google Scholar 

  • Orsi AJ, Cornuelle BD, Severinghaus JP (2012) Little Ice Age cold interval in West Antarctica: evidence from borehole temperature at the West Antarctic ice sheet (WAIS) divide. Geophys Res Lett 39:L09710. doi:10.1029/2012GL051260

    Google Scholar 

  • PAGES 2K network (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci. doi:10.1038/NGEO1797

    Google Scholar 

  • Phipps SJ, Rotstayn LD, Gordon HB, Roberts JL, Hirst AC, Budd WF (2011) The CSIRO Mk3L climate system model version 10—part 1: description and evaluation. Geosci Model Dev 4:483–509. doi:10.5194/gmd-4-483-2011

    Google Scholar 

  • Phipps SJ, Rotstayn LD, Gordon HB, Roberts JL, Hirst AC, Budd WF (2012) The CSIRO Mk3L climate system model version 10—part 2: response to external forcings. Geosci Model Dev 5:649–682. doi:10.5194/gmd-5-649-2012

    Google Scholar 

  • Putnam AE, Schaefer JM, Denton GH, Barrell DJA, Finkel RC, Andersen BG, Schwartz R, Chinn TJC, Doughty AM (2012) Regional climate control of glaciers in New Zealand and Europe during the pre-industrial holocene. Nat Geosci. doi:10.11038/NGEO1548

    Google Scholar 

  • Rein B, Lückge A, Sirocko F (2004) A major holocene ENSO anomaly during the medieval period. Geophys Res Lett 31:L17211. doi:10.1029/2004gl020161

    Google Scholar 

  • Rein B, Lückge A, Reinhardt F, Sirocko F, Wolf A, Dullo W-C (2005) El Niño variability off Peru during the last 20, 000 years. Paleoceanography 20:PA4003. doi:10.1029/2004PA001099

    Google Scholar 

  • Renwick JA, Revell MJ (1999) Blocking over the South Pacific and Rossby wave propagation. Mon Weather Rev 127:2233–2247. doi:10.1175/1520-0493(1999)127<2233:BOTSPA>20CO;2

    Google Scholar 

  • Risbey JS, Pook MJ, McIntosh PC, Ummenhofer CC, Meyers G (2009) Characteristics and variability of synoptic features associated with cool season rainfall in southeastern Australia. Int J Climatol 29:1595–1613

    Google Scholar 

  • Rodgers KB et al (2011) Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds. Clim Past Discuss 7:347–379

    Google Scholar 

  • Rodysill JR, Russell JM, Bijaksana S, Brown E, Safiuddin L, Eggermont H et al (2011) A paleolimnological record of rainfall and drought from East Java, Indonesia during the last 1,400 years. J Paleolimnol pp 1–15. doi:10.1007/s10933-011-9564-3

  • Rosqvist GC, Schuber P (2003) Millennial-scale climate changes on South Georgia, Southern Ocean. Quat Res 59:470–475

    Google Scholar 

  • Rosqvist GC, Rietti-Shati M, Shemesh A (1999) Late glacial to middle holocene climatic record of lacustrine biogenic silica oxygen isotopes from a Southern Ocean island. Geology 27:967–970

    Google Scholar 

  • Sachs JP, Myhrvold CL (2011) A shifting band of rain. Sci Am 304(3):60–65

    Google Scholar 

  • Sachs JP, Sachse D, Smittenberg RK, Zhang Z, Battisti DS, Golubic S (2009) Southward movement of the Pacific intertropical convergence zone AD 1400–1850. Nat Geosci. doi:10.1038/NGEO554

    Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Schaefer JM et al (2009) High-frequency holocene glacier fluctuations in new Zealand differ from northern signature. Science 324:622. doi:10.1126/science1169312

    Google Scholar 

  • Schenk F, Zorita E (2012) Reconstruction of high resolution atmospheric fields for Northern Europe using analog-upscaling. Clim Past Discuss 8:819–868. doi:10.5194/cpd-8-819-2012

    Google Scholar 

  • Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24

    Google Scholar 

  • Speirs JC, Steinhoff DF, McGowan HA, Bromwich DH, Monaghan AJ (2010) Foehn winds in the McMurdo dry Valleys, Antarctica: the origin of extreme warming events. J Clim 23:3577–3598

    Google Scholar 

  • Stager JC, Ryves D, Cumming BF, Meeker LD, Beer J (2005) Solar variability and the levels of Lake Victoria, East Africa, during the last millennium. J Paleolimnol 33:243–251

    Google Scholar 

  • Stager JC, Ruzmaikin A, Conway D, Verburg P, Mason PJ (2007) Solar variability, ENSO, and the levels of Lake Victoria, East Africa. J Geophys Res 112:D15106. doi:10.1029/2006JD008362

    Google Scholar 

  • Stager JC, Cocquyt C, Bonnefille R, Weyhenmeyer C, Bowerman N (2009) A late holocene paleoclimatic history of Lake Tanganyika, East Africa. Quat Res 72:47–56

    Google Scholar 

  • Stager JC, Mayewski PA, White J, Chase BM, Neumann F, Meadows ME, King C, Dixon D (2012) Precipitation variability in the winter rainfall zone of South Africa during the last 1400 years linked to the austral westerlies. Clim Past 8:877–887

    Google Scholar 

  • Stammerjohn S, Martinson D, Smith R, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern oscillation and southern annular mode variability. J Geophys Res C Oceans 113:C03S90. doi:10.1029/2007JC004269

  • Steig EJ et al (2013) Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nat Geosci doi:10.1038/NGEO1778

  • Stine S (1994) Extreme and persistent drought in California and Patagonia during mediaeval time. Nature 369:546–549

    Google Scholar 

  • Thompson D, Wallace J (2000) Annular modes in the extratropical circulation part I: month-to-month variability. J Clim 13:1000–1016

    Google Scholar 

  • Tierney JE, Oppo DW, Rosenthal Y, Russell JM, Linsley BK (2010a) Coordinated hydrological regimes in the Indo‐Pacific region during the past two millennia. Paleoceanography 25:PA1102. doi:10.1029/2009PA001871

    Google Scholar 

  • Tierney JE, Mayes MT, Meyer N, Johnson C, Swarzenski PW, Cohen AS, Russell JM (2010b) Late-twentieth-century warming in Lake Tanganyika unprecedented since AD 500. Nat Geosci 3. doi:10.1038/NGEO865

  • Trenberth KE (1997) The definition of El Nino. Bull Am Meterol Soc 78:2771–2777

    Google Scholar 

  • Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science 324:78–80

    Google Scholar 

  • Tsonis A, Swanson K, Kravtsov S (2007) A new dynamical mechanism for major climate shifts. Geophys Res Lett 34:L13705. doi:10.1029/2007GL030288

    Google Scholar 

  • Turner J (2004) The El Niño–Southern oscillation and Antarctica. Int J Climatol 24:1–31. doi:10.1002/joc965

    Google Scholar 

  • Tyson PD, Lindesay JA (1992) The climate of the last 2000 years in southern Africa. Holocene 2:271. doi:10.1177/095968369200200210

    Google Scholar 

  • Van den Dool HM (1994) Searching for analogues, how long must we wait? Tellus A 46:314–324. doi:10.1034/j.1600-0870.1994.t01-2-00006.x

    Google Scholar 

  • van Ommen TD, Morgan V (2010) Snowfall increase in coastal East Antarctica linked with southwest Western Australian drought. Nat Geosci 3:267–272

    Google Scholar 

  • Vecchi G, Soden B, Wittenberg A, Held I, Leetmaa A, Harrison M et al (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 44. doi:10.1038/nature04744

  • Villalba R (1990) Climatic fluctuations in Northern Patagonia during the last 1000 years as inferred from tree-ring records. Quat Res 34:346–360

    Google Scholar 

  • Visbeck M, Hall A (2004) Reply. J Clim 17:2255–2258

    Google Scholar 

  • Von Gunten L, Grosjean M, Rein B, Urrutia R, Appleby P (2009) A quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo, central Chile, back to AD 850. Holocene 19(6):873–881

    Google Scholar 

  • Williams AN, Ulm S, Goodwin ID, Smith M (2010) Hunter-gather response to late Holocene climatic variability in northern and central Australia. J Quat Sci 25(6):831–838. doi:10.1002/jqs.1416

    Google Scholar 

Download references

Acknowledgments

This work is a contribution to the PAGES2K Australasian regional synthesis (part of the PAGES Aus2k project). The research was part funded by a Macquarie University External Collaborative Grant with the News South Wales Office for Environment and Heritage, and the New South Wales Environmental Trust. The research forms a contribution to the Eastern Seaboard Climate Change Initiative (ESCCI). S. Phipps’ CSIRO Mk3L modeling was supported under the Australian Research Council’s Discovery Projects funding scheme (Project Number DP1092945). AML was supported in part by the NIWA core-funded project “Climate Present and Past”. The paper draws on a significant proxy climate database interpreted from Antarctic Ice Coring and we acknowledge the support of the US National Science Foundation Office of Polar Programs, Antarctica New Zealand and the Australian Antarctic Division. We thank the reviewers for there constructive suggestions to improve both the methodology and manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian D. Goodwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodwin, I.D., Browning, S., Lorrey, A.M. et al. A reconstruction of extratropical Indo-Pacific sea-level pressure patterns during the Medieval Climate Anomaly. Clim Dyn 43, 1197–1219 (2014). https://doi.org/10.1007/s00382-013-1899-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1899-1

Keywords

Navigation