Skip to main content

Advertisement

Log in

Commercial rhizobial inoculants significantly enhance growth and nitrogen fixation of a promiscuous soybean variety in Kenyan soils

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Low effectiveness of native strains remains a limitation to soybean productivity in sub-Saharan Africa; while in other countries commercial inoculants are produced that provide effective strains that stimulate N fixation and growth. An experiment was set up to evaluate the response of a dual purpose promiscuous soybean variety (TGx1740-2F) and a non-promiscuous variety (Nyala) to commercial rhizobium inoculants in soils from central and coastal Kenya. Highest nodulation was observed in some of the treatments with commercial inoculants applied with nodule weights of 4.5 and 1.0 g plant−1 for TGx1740-2F and Nyala, respectively. Average biomass yields of TGx1740-2F (16 g plant−1) were twice as large as of Nyala (7.5 g plant−1) at the podding stage. Nitrogen fixation was higher in TGx1740-2F than in Nyala, and positively affected by a number of commercial inoculants with more than 50% N derived from the atmosphere. Nodule occupancy was 100% on both soybean varieties, indicating that the commercial strains were extremely infective in both of the tested soils. These results showed that commercial strains can be used to inoculate promiscuous soybean and enhance N fixation and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abaidoo RC, Keyser HH, Singleton PW, Dashiell KE, Sanginga N (2007) Population size, distribution and symbiotic characteristics of indigenous Bradyrhizobium spp. that nodulate TGx soybean genotypes in Africa. Appl Soil Ecol 35:57–67

    Article  Google Scholar 

  • Food and Agricultural Organisation (2006) World reference base for soil resources, a framework for international classification, correlation and communication. 2nd Edition. Rome, Italy

  • Alves RBJ, Boddey MR, Urquiaga S (2003) The success of BNF in soybean in Brazil. Plant Soil 252:1–9

    Article  CAS  Google Scholar 

  • Barcellos GF, Batista JSS, Menna P, Hungria M (2009) Genetic differences between Bradyrhizobium japonicum variant strains contrasting in N2-fixation efficiency revealed by representational difference analysis. Arch Microbiol 191:113–122

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Bacteria/plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment, vol. 1. Elsevier, Oxford, pp 103–115

    Google Scholar 

  • Bizarro MJ, Giongo A, Vargas KL, Roesch LFW, Gano KA, de Sá ELS, Passaglia LMP, Selbac PA (2011) Genetic variability of soybean bradyrhizobia populations under different soil managements. Biol Fert Soils 47:357–362

    Article  Google Scholar 

  • Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15 N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosy 57:235–270

    Article  Google Scholar 

  • Bremer E, Van Kessel C, Nelson L, Rennie RJ, Rennie DA (1990) Selection of Rhizobium leguminosarum strains for lentil (Lens culinaris) under growth room and field conditions. Plant Soil 121:47–56

    Article  Google Scholar 

  • Carsky RJ, Abaidoo R, Dashiel KE, Sanginga N (1997) Effect of soybean on subsequent maize grain yield in Guinea Savannah of West Africa. Afr Crop Sci J 5(416):31–39

    Google Scholar 

  • Ferreira MC, Hungria MH (2002) Recovery of soybean inoculant strains from uncropped soils in Brazil. Field Crops Res 79:139–152

    Article  Google Scholar 

  • Galli-Terasawa LV, Glienke-Blanco C, Hungria M (2003) Diversity of soybean rhizobial population adapted to a Cerrados soil. World J Microb Biotechnol 19:933–939

    Article  CAS  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn. CABI, Wallingford, p 423

    Book  Google Scholar 

  • Guimarães AP, de Morais RF, Urquiaga S, Boddey RM, Alves BJR (2008) Bradyrhizobium strain and the 15 N natural Abundance quantification of biological N2 fixation in soybean. Sci Agric (Piracicaba, Braz) 65:516–524

    Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Herrmann L, Atieno OM, Okalebo J, Lesueur D (2010) Molecular identification of the strains in commercial products for improving agriculture in Africa. Poster presented at the 13th international symposium on microbial ecology. 22nd–27th August 2010. Seattle, USA

  • Houngnandan PR, Yemadje GH, Oikeh SO, Djidohokpin CF, Boeckx P, Van Cleemput O (2008) Improved estimation of biological nitrogen fixation of soybean cultivars (Glycine max L. Merrill) using 15 N natural abundance technique. Biol Fert Soils 45:175–183

    Article  CAS  Google Scholar 

  • Hungria M, Lı’gia MO, Chueire MM, Megı’as M, Lamrabet Y, Probanza A, Guttierrez-Mañero FJ, Campo RJ (2006a) Genetic diversity of indigenous tropical fast-growing rhizobia isolated from soybean nodules. Plant Soil 288:343–356

    Article  CAS  Google Scholar 

  • Hungria M, Campo RJ, Mendes IC, Graham PH (2006b) Contribution of biological nitrogen fixation to the nitrogen nutrition of grain crops in the tropics: the success of soybean (Glycine max L. Merr.) in South America. In: Singh RP, Shankar N, Jaiwal PK (eds) Nitrogen nutrition in plant productivity. Studium, Houston, pp 43–93

    Google Scholar 

  • Hymowitz T (1970) On the domestication of the soybean. Econ Bot 24:408–421

    Article  Google Scholar 

  • Krasova-Wade T, Ndoye I, Braconnier S, Sarr B, de Lajuide P, Neyra M (2003) Diversity of indigenous bradyrhizobia associated with three cowpea cultivars (Vigna unguiculata L.) (Walp) grown under limited and favourable water conditions in Senegal (West Africa). Afr J Biotechnol 2:13–22

    CAS  Google Scholar 

  • Kueneman EA, Root WR, Dashiell KE, Hohenberg J (1984) Breeding soybean for the tropics capable of nodulating effectively with indigenous Rhizobium spp. Plant Soil 82:387–396

    Article  Google Scholar 

  • Lata SAK, Tilak KVBR (2000) Biofertilizers to augment soil fertility and crop production. In: Krishna KR (ed) Soil fertility and crop production. Science Publishers, Enfield, pp 279–312

    Google Scholar 

  • Lynch JM (1990) Beneficial interactions between microorganisms and roots. Biotech Adv 8:335–346

    Article  CAS  Google Scholar 

  • Mariotti A, Pierre D, Vedy JC, Brukert S, Guillemot J (1980) The abundance of natural 15 N in the organic matter of soils along an altitudinal gradient (Chablais, Haute Savoie, France). Catena 7:293–300

    CAS  Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3:1–7

    CAS  Google Scholar 

  • Melchiorre M, de Luca MJ, Anta GG, Suarez P, Lopez C, Lascano R, Racca RW (2011) Evaluation of bradyrhizobia strains isolated from field-grown soybean plants in Argentina as improved inoculants. Biol Fert Soils 47:81–89

    Article  Google Scholar 

  • Morse WJ (1950) History of soybean production. In: Markley KL (ed) Soybeans and soybean products. Interscience Publ. Inc., New York, pp 3–59

    Google Scholar 

  • Mpepereki S, Javaheri F, Davis P, Giller KE (2000) Soybeans and sustainable agriculture: promiscuous soybeans in southern Africa. Field Crops Res 65:137–149

    Article  Google Scholar 

  • Musiyima K, Mpepereki S, Giller KE (2005) Symbiotic effectiveness and host ranges of indigenous nodulating promiscuous soybean varieties in Zimbabwean soils. Soil Biol Biochem 37:1169–1176

    Article  Google Scholar 

  • Navarro E, Simonet P, Normand P, Bardin R (1992) Characterization of natural population of Nitrobacter spp using PCR-RFLP analysis of ribosomal intergenic spacer. Arch Microbiol 157:107–115

    PubMed  CAS  Google Scholar 

  • Okereke GU, Eaglesham ARJ (1993) Nodulation and nitrogen fixation by 79 promiscuous soybean genotypes in soil in eastern Nigeria. Agro Afrique 2:113–122

    Google Scholar 

  • Peoples MB, Brockwel J, Herridge DF, Rochester IJ, Alves BRJ, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C, Rerkasem B, Khans DF, Hauggaard-Nielsen H, Jensen BS (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:1–17

    Article  CAS  Google Scholar 

  • Perret X, Staehelin C, Spaink HP (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol R 64:180–201

    Article  CAS  Google Scholar 

  • Ponsonet C, Nesme X (1994) Identification of agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch Microbiol 16:300–309

    Google Scholar 

  • Rouvier C, Prin Y, Reddel P, Normand P, Simonet P (1996) Genetic diversity among Frankia strains nodulating members of the family Casuarinaceae in Australia revealed by PCR and restriction fragment length polymorphism analysis with crushed root nodules. Appl Environ Microbiol 62:979–985

    PubMed  CAS  Google Scholar 

  • Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann (2008) Nitrogen uptake, fixation and response to fertilizer N in soybean: a review. Field Crops Res 108:1–13

    Article  Google Scholar 

  • Sanginga N, Abaidoo RC, Dashiell K, Carsky RJ, Okogun JA (1996) Persistence and effectiveness of rhizobia nodulating promiscuous soybeans in moist savanna zones of Nigeria. Appl Soil Ecol 3:215–224

    Article  Google Scholar 

  • Sanginga N, Dashiell K, Okogun JA, Thottappilly G (1997) Nitrogen fixation and N contribution by promiscuous nodulating soybeans in the southern Guinea savanna of Nigeria. Plant Soil 195:257–266

    Article  CAS  Google Scholar 

  • Sanginga N, Thottappilly G, Dashiell KE (2000) Effectiveness of rhizobia nodulating recent promiscuous soybean selections in the moist savannah of Nigeria. Soil Biol Biochem 32:215–224

    Article  Google Scholar 

  • Sanginga N, Dashiell K, Diels J, Vanlauwe B, Lyasse O, Carsky RJ, Tarawali S, Asafo-Adjei B, Menkir A, Schulz S, Singh BB, Chikoye D, Keatinge D, Rodomiro O (2003) Sustainable resource management coupled to resilient germplasm to provide new intensive cereal–grain legume–livestock systems in the dry savanna. Agr Ecosyst Environ 100:305–314

    Article  Google Scholar 

  • SAS Institute Inc (2006) SAS user’s guide: statistics. SAS Institute Inc, Cary

    Google Scholar 

  • Saxena AK, Shende R, Grover M (2006) Interactions among beneficial microorganisms. In: Mukerirji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Berlin, pp 121–132

    Chapter  Google Scholar 

  • Shearer GB, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15 N abundance. Austr J Plant Physiol 13:699–756

    CAS  Google Scholar 

  • Shearer G, Kohl DH, Chien SH (1978) The 15 N abundance in a wide variety of soils. Soil Sci Soc Am J 42:899–902

    Article  CAS  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Royal Botanic Gardens, Kew

    Google Scholar 

  • Tewari K, Minagawa R, Suganuma T, Fujikake H, Ohtake N, Sueyoshi K, Takahashi Y, Ohyama T, Tsuchida T (2003) Effect of deep placement of slow release nitrogen fertilizers and inoculation of bradyrhizobia on the first cropping of soybean in the field dressed with mountain soil. Soil Sci Plant Nutr 74:183–189

    Google Scholar 

  • Thiao M, Neyra M, Isidore E, Sylla S, Lesueur D (2004) Diversity and effectiveness of rhizobium from Gliricidia sepium native to Reunion Island, Kenya and New Caledonia. World J Microb Biot 20:703–709

    Article  CAS  Google Scholar 

  • Walley FL, Clayton GW, Miller PR, Carr PM, Lafond GP (2007) Nitrogen economy of pulse production in the northern great plains. Agron J 99:1710–1718

    Article  CAS  Google Scholar 

  • Wasike VW, Lesueur D, Wachira FN, Mungai NW, Mumera LM, Sanginga N, Mburu HN, Mugadi D, Wango P, Vanlauwe B (2009) Genetic diversity of indigenous Bradyrhizobium nodulating promiscuous soybean [Glycine max (L) Merr.] varieties in Kenya: impact of phosphorus and lime fertilization in two contrasting sites. Plant Soil 322:151–163

    Article  CAS  Google Scholar 

  • Weaver RW, Frederick LR (1974) A new technique for most probable-number counts of rhizobia. Plant Soil 36:219–222

    Article  Google Scholar 

  • Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14

    Article  CAS  Google Scholar 

  • Xavier IJ, Holloway G, Leggett M (2004) Development of rhizobial inoculant formulations. Online. Crop Management doi:10.1094/CM-2004-0301-06-RV

  • Yusuf AA, Abaidoo RC, Iwuafor ENO, Olufajo OO (2008) Genotype effects of cowpea and soybean on nodulation, N2 fixation and N balance in the Northern Guinea savannah of Nigeria. Agron J 7:258–264

    Article  CAS  Google Scholar 

  • Zengeni R, Giller KE (2007) Effectiveness of indigenous soybean rhizobial isolates to fix nitrogen under field conditions of Zimbabwe. Symbiosis 43:129–135

    CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the Bill and Melinda Gates Foundation through the Tropical Soil Biology and Fertility Institute of CIAT (TSBF-CIAT) project on commercial microbial products. We gratefully acknowledge the contributions of Edwin Mutegi, Phillip Malala, Harrison Mburu, Elias Mwangi, Ruth Mukhongo, and Samuel Mathu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Lesueur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thuita, M., Pypers, P., Herrmann, L. et al. Commercial rhizobial inoculants significantly enhance growth and nitrogen fixation of a promiscuous soybean variety in Kenyan soils. Biol Fertil Soils 48, 87–96 (2012). https://doi.org/10.1007/s00374-011-0611-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0611-z

Keywords

Navigation