Skip to main content
Log in

A visual-numeric approach to clustering and anomaly detection for trajectory data

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper proposes a novel application of Visual Assessment of Tendency (VAT)-based hierarchical clustering algorithms (VAT, iVAT, and clusiVAT) for trajectory analysis. We introduce a new clustering based anomaly detection framework named iVAT+ and clusiVAT+ and use it for trajectory anomaly detection. This approach is based on partitioning the VAT-generated Minimum Spanning Tree based on an efficient thresholding scheme. The trajectories are classified as normal or anomalous based on the number of paths in the clusters. On synthetic datasets with fixed and variable numbers of clusters and anomalies, we achieve 98 % classification accuracy. Our two-stage clusiVAT method is applied to 26,039 trajectories of vehicles and pedestrians from a parking lot scene from the real life MIT trajectories dataset. The first stage clusters the trajectories ignoring directionality. The second stage divides the clusters obtained from the first stage by considering trajectory direction. We show that our novel two-stage clusiVAT approach can produce natural and informative trajectory clusters on this real life dataset while finding representative anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Synthetic trajectory dataset. http://avires.dimi.uniud.it/papers/trclust/dataset2.zip. Accessed 23 Dec 2014

  2. Ali, I., Dailey, M.N.: Multiple human tracking in high-density crowds. Image Vis. Comput. 30(12), 966–977 (2012)

    Article  Google Scholar 

  3. Arandjelović, O.: Contextually learnt detection of unusual motion-based behaviour in crowded public spaces. In: Computer and Information Sciences II, pp 403–410. Springer, London (2012)

  4. Benezeth, Y., Jodoin, P., Saligrama, V., Rosenberger, C.: Abnormal events detection based on spatio-temporal co-occurences. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2009, pp. 2458–2465 (2009)

  5. Bezdek, J., Hathaway, R.: VAT: a tool for visual assessment of (cluster) tendency. In: International Joint Conference on Neural Networks (IJCNN), pp. 2225–2230 (2002)

  6. Bousetouane, F., Dib, L., Snoussi, H.: Improved mean shift integrating texture and color features for robust real time object tracking. Vis. Comput. 29(3), 155–170 (2013)

    Article  Google Scholar 

  7. Brun, L., Saggese, A., Vento, M.: Learning and classification of car trajectories in road video by string kernels. Int. Conf. Comput. Vis. Theory Appl. 1, 709–714 (2013)

    Google Scholar 

  8. Chan, A., Mahadevan, V., Vasconcelos, N.: Generalized stauffer-grimson background subtraction for dynamic scenes. Mach. Vis. Appl. 22(5), 751–766 (2011)

    Article  Google Scholar 

  9. Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2011, pp. 3449–3456 (2011)

  10. Cong, Y., Yuan, J., Tang, Y.: Video anomaly search in crowded scenes via spatio-temporal motion context. IEEE Trans. Inf. Forensics Secur. 8(10), 1590–1599 (2013)

    Article  Google Scholar 

  11. Cui, X., Liu, Q., Gao, M., Metaxas, D.: Abnormal detection using interaction energy potentials. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2011, pp. 3161–3167 (2011)

  12. Fu, Z., Hu, W., Tan, T.: Similarity based vehicle trajectory clustering and anomaly detection. In: IEEE International Conference on Image Processing (ICIP), Sept 2005, vol. 2, pp. II-602–605 (2005)

  13. Hathaway, R., Bezdek, J., Huband, J.: Scalable visual assessment of cluster tendency for large data sets. Pattern Recognit. 39, 1315–1324 (2006)

    Article  MATH  Google Scholar 

  14. Havens, T., Bezdek, J.: An efficient formulation of the improved visual assessment of cluster tendency (iVAT) algorithm. IEEE Trans. Knowl. Data Eng. 24(5), 813–822 (2012)

    Article  Google Scholar 

  15. Hoare, C.A.R.: Algorithm 64: Quicksort. Commun. ACM 4(7), 321 (1961)

    Article  Google Scholar 

  16. Jiang, F., Wu, Y., Katsaggelos, A.: A dynamic hierarchical clustering method for trajectory-based unusual video event detection. IEEE Trans. Image Process. 18(4), 907–913 (2009)

    Article  MathSciNet  Google Scholar 

  17. Jiang, F., Yuan, J., Tsaftaris, S.A., Katsaggelos, A.K.: Anomalous video event detection using spatiotemporal context. Comput. Vis. Image Underst. 115(3), 323–333 (2011)

    Article  Google Scholar 

  18. Keogh, E., Lin, J., Fu, A.: Hot sax: Efficiently finding the most unusual time series subsequence. In: IEEE International Conference on Data Mining, ICDM ’05, pp. 226–233 (2005)

  19. Kim, J., Grauman, K.: Observe locally, infer globally: A space-time mrf for detecting abnormal activities with incremental updates. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2009, pp. 2921–2928 (2009)

  20. Kumar, D. Bezdek, J., Palaniswami, M., Rajasegarar, S., Leckie, C., Havens, T.: A hybrid approach to clustering in big data. IEEE Trans. Cybern. PP(99):1 (2015)

  21. Kumar, D., Palaniswami, M., Rajasegarar, S., Leckie, C., Bezdek, J., Havens, T.: clusiVAT: A mixed visual/numerical clustering algorithm for big data. In: IEEE International Conference on Big Data, Oct 2013, pp. 112–117

  22. Laxhammar, R., Falkman, G.: Sequential conformal anomaly detection in trajectories based on hausdorff distance. In: International Conference on Information Fusion (FUSION), July 2011, pp. 1–8 (2011)

  23. Laxhammar, R., Falkman, G.: Online learning and sequential anomaly detection in trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1158–1173 (2014)

    Article  MATH  Google Scholar 

  24. Li, W., Mahadevan, V., Vasconcelos, N.: Anomaly detection and localization in crowded scenes. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 18–32 (2014)

    Article  Google Scholar 

  25. Li, X., Han, J., Kim, S., Gonzalez, H.: ROAM: rule and motif-based anomaly detection in massive moving object data sets. In: SIAM International Conference on Data Mining (2007)

  26. Martin, R., Arandjelović, O.: Multiple-object tracking in cluttered and crowded public spaces. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammound, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) Advances in Visual Computing, Lecture Notes in Computer Science, vol. 6455, pp. 89–98. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  27. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2009, pp. 935–942 (2009)

  28. Morris, B., Trivedi, M.: A survey of vision-based trajectory learning and analysis for surveillance. IEEE Trans. Circuits Syst. Video Technol. 18(8), 1114–1127 (2008)

    Article  Google Scholar 

  29. Morris, B., Trivedi, M.: Learning trajectory patterns by clustering: Experimental studies and comparative evaluation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2009, pp. 312–319 (2009)

  30. Naftel, A., Khalid, S.: Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space. Multimed. Syst. 12(3), 227–238 (2006)

    Article  Google Scholar 

  31. Pham, D.S., Arandjelovic, O., Venkatesh, S.: Detection of dynamic background due to swaying movements from motion features. IEEE Trans. Image Process. 24(1), 332–344 (2015)

    Article  MathSciNet  Google Scholar 

  32. Piciarelli, C., Foresti, G.: Anomalous trajectory detection using support vector machines. In: IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS), Sept 2007, pp. 153–158 (2007)

  33. Piciarelli, C., Micheloni, C., Foresti, G.: Trajectory-based anomalous event detection. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1544–1554 (2008)

    Article  Google Scholar 

  34. Rabiner, L., Juang, B.H.: Fundamentals of Speech Recognition. Prentice-Hall Inc, Upper Saddle River (1993)

    MATH  Google Scholar 

  35. Rao, Y.: Automatic vehicle recognition in multiple cameras for video surveillance. Vis. Comput. 31(3), 271–280 (2015)

    Article  Google Scholar 

  36. Rodriguez, M., Sivic, J., Laptev, I. and Audibert, J.Y.: Density-aware person detection and tracking in crowds. In: International Conference on Computer Vision (ICCV) (2011)

  37. Roshtkhari, M., Levine, M.: Online dominant and anomalous behavior detection in videos. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2013, pp. 2611–2618 (2013)

  38. Saleemi, I., Shafique, K., Shah, M.: Probabilistic modeling of scene dynamics for applications in visual surveillance. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1472–1485 (2009)

    Article  Google Scholar 

  39. Saligrama, V., Konrad, J., Jodoin, P.: Video anomaly identification. IEEE Signal Process. Mag. 27(5), 18–33 (2010)

    Article  Google Scholar 

  40. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)

    Google Scholar 

  41. Vishwakarma, S., Agrawal, A.: A survey on activity recognition and behavior understanding in video surveillance. Vis. Comput. 29(10), 983–1009 (2013)

    Article  Google Scholar 

  42. Wang, X., Ma, K., Ng, G.W., Grimson, W.: Trajectory analysis and semantic region modeling using nonparametric hierarchical bayesian models. Int. J. Comput. Vis. 95(3), 287–312 (2011)

    Article  Google Scholar 

  43. Wang, X., Ma, K.T., Ng, G.W., Grimson, W.: Trajectory analysis and semantic region modeling using a nonparametric bayesian model. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2008, pp. 1–8 (2008)

  44. Zhao, B., Fei, L.F., Xing, E.P.: Online detection of unusual events in videos via dynamic sparse coding. In; IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3313–3320. IEEE Computer Society (2011)

  45. Zhou, Y., Yan, S., Huang, T.: Detecting anomaly in videos from trajectory similarity analysis. In: IEEE International Conference on Multimedia and Expo, July 2007, pp. 1087–1090 (2007)

Download references

Acknowledgments

We acknowledge the support from the Australian Research Council (ARC) Linkage Project grant (LP120100529), the ARC Linkage Infrastructure, Equipment and Facilities scheme (LIEF) grant (LF120100129), the EU-FP7 SOCIOTAL grant and National ICT Australia (NICTA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheeraj Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Bezdek, J.C., Rajasegarar, S. et al. A visual-numeric approach to clustering and anomaly detection for trajectory data. Vis Comput 33, 265–281 (2017). https://doi.org/10.1007/s00371-015-1192-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1192-x

Keywords

Navigation