Skip to main content
Log in

The adenylate energy charge as a new and useful indicator of capture stress in chondrichthyans

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Quantifying the physiological stress response of chondrichthyans to capture has assisted the development of fishing practices conducive to their survival. However, currently used indicators of stress show significant interspecific and intraspecific variation in species’ physiological responses and tolerances to capture. To improve our understanding of chondrichthyan stress physiology and potentially reduce variation when quantifying the stress response, we investigated the use of the adenylate energy charge (AEC); a measure of available metabolic energy. To determine tissues sensitive to metabolic stress, we extracted samples of the brain, heart, liver, white muscle and blood from gummy sharks (Mustelus antarcticus) immediately following gillnet capture and after 3 h recovery under laboratory conditions. Capture caused significant declines in liver, white muscle and blood AEC, whereas no decline was detected in the heart and brain AEC. Following 3 h of recovery from capture, the AEC of the liver and blood returned to “unstressed” levels (control values) whereas white muscle AEC was not significantly different to that immediately after capture. Our results show that the liver is most sensitive to metabolic stress and white muscle offers a practical method to sample animals non-lethally for determination of the AEC. The AEC is a highly informative indicator of stress and unlike current indicators, it can directly measure the change in available energy and thus the metabolic stress experienced by a given tissue. Cellular metabolism is highly conserved across organisms and, therefore, we think the AEC can also provide a standardised form of measuring capture stress in many chondrichthyan species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afonso AS, Hazin FHV (2014) Post-release survival and behavior and exposure to fisheries in juvenile tiger sharks, Galeocerdo cuvier, from the South Atlantic. J Exp Mar Biol Ecol 454:55–62

    Article  Google Scholar 

  • Atkinson DE (1968) Energy charge of adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034

    Article  PubMed  CAS  Google Scholar 

  • Benoît HP, Hurlbut T, Chassé J, Jonsen ID (2012) Estimating fishery-scale rates of discard mortality using conditional reasoning. Fish Res 125:318–330

    Article  Google Scholar 

  • Braccini, M, Rijn, JV, Frick, L (2012) High post-capture survival for sharks, rays and chimaeras discarded in the main shark fishery of Australia? PLoS One 7:e32547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brooks EJ, Mandelman JW, Sloman KA, Liss S, Danylchuk AJ, Cooke SJ, Skomal GB, Philipp DP, Sims DW, Suski CD (2012) The physiological response of the Caribbean reef shark (Carcharhinus perezi) to longline capture. Comp Biochem Physiol A Mol Integr Physiol 162:94–100

    Article  PubMed  CAS  Google Scholar 

  • Butler PJ, Taylor EW (1971) Response of the dogfish (Scyliorhinus canicula L.) to slowly induced and rapidly induced hypoxia. Comp Biochem Physiol A Physiol 39:307–323

    Article  CAS  Google Scholar 

  • Butler P, Taylor E (1975) The effect of progressive hypoxia on respiration in the dogfish (Scyliorhinus canicula) at different seasonal temperatures. J Exp Biol 63:117–130

    PubMed  CAS  Google Scholar 

  • Caldwell CA, Hinshaw JM (1994) Nucleotides and the adenylate energy charge as indicators of stress in rainbow trout (Oncorhyncus mykiss) subjected to a range of dissolved oxygen concentrations. Comp Biochem Physiol B Biochem Mol Biol 109:313–323

    Article  Google Scholar 

  • Cartamil DP, Sepulveda CA, Wegner NC, Aalbers SA, Baquero A, Graham JB (2011) Archival tagging of subadult and adult common thresher sharks (Alopias vulpinus) off the coast of southern California. Mar Biol 158:935–944

    Article  PubMed  PubMed Central  Google Scholar 

  • Cliff G, Thurman G (1984) Pathological and physiological effects of stress during capture and transport in the juvenile dusky shark, Carcharhinus obscurus. Comp Biochem Physiol A Physiol 78:167–173

    Article  Google Scholar 

  • Coles, JA, Sigg, DC, Iaizzo, PA (2009) Reversible and irreversible damage of the myocardium: new ischemic syndromes, ischemia/reperfusion injury, and cardioprotection. In: Iaizzo PA (ed) Handbook of cardiac anatomy, physiology, and devices (2nd edn), pp 219–229. (Springer Science + Business Media, LLC)

  • Cosgrove R, Arregui I, Arrizabalaga H, Goni N, Neilson JD (2015) Predation of pop-up satellite archival tagged albacore (Thunnus alalunga). Fish Res 162:48–52

    Article  Google Scholar 

  • Dalla Via J, van den Thillart G, Cattani O, Dezwaan A (1994) Influence of long-term hypoxia exposure on the energy metabolism of Solea solea. II. Intermediary metabolism in blood, liver and muscle. Mar Ecol Prog Ser 111:17–27

    Article  CAS  Google Scholar 

  • Dapp DR, Walker TI, Huveneers C, Reina RD (2015) Respiratory mode and gear type are important determinants of elasmobranch immediate and post-release mortality. Fish Fish. doi:10.1111/faf.12124

    Google Scholar 

  • Davie PS, Farrell AP (1991) Cardiac performance of an isolated heart preparation from the dogfish (Squalus acanthias)—the effects of hypoxia and coronary-artery perfusion. Can J Zool Revue Canadienne de Zoologie 69:1822–1828

    Article  Google Scholar 

  • Development Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Divers SJ, Boone SS, Berliner A, Kurimo EA, Boysen KA, Johnson DR, Killgore KJ, George SG, Hoover JJ (2013) Nonlethal acquisition of large liver samples from free-ranging river sturgeon (Scaphirynchus) using single-entry endoscopic biopsy forceps. J Wildl Dis 49:321–331

    Article  PubMed  Google Scholar 

  • Driedzic WR, Hochachka PW (1976) Control of energy metabolism in fish white muscle. Am J Physiol 230:579–582

    PubMed  CAS  Google Scholar 

  • Dulvy NK, Fowler SL, Musick JA, Cavanagh RD, Kyne PM, Harrison LR, Carlson JK, Davidson LNK, Fordham SV, Francis MP, Pollock CM, Simpfendorfer CA, Burgess GH, Carpenter KE, Compagno LJV, Ebert DA, Gibson C, Heupel MR, Livingstone SR, Sanciangco JC, Stevens JD, Valenti S, White WT (2014) Extinction risk and conservation of the world’s sharks and rays. Elife 3:1–34

    Article  Google Scholar 

  • Eltzschig HK, Collard CD (2004) Vascular ischaemia and reperfusion injury. Br Med Bull 70:71–86

    Article  PubMed  CAS  Google Scholar 

  • Frick LH, Reina RD, Walker TI (2009) The physiological response of Port Jackson sharks and Australian swellsharks to sedation, gill-net capture, and repeated sampling in captivity. North Am J Fish Manag 29:127–139

    Article  Google Scholar 

  • Frick LH, Reina RD, Walker TI (2010a) Stress related physiological changes and post-release survival of Port Jackson sharks (Heterodontus portusjacksoni) and gummy sharks (Mustelus antarcticus) following gill-net and longline capture in captivity. J Exp Mar Biol Ecol 385:29–37

    Article  Google Scholar 

  • Frick LH, Walker TI, Reina RD (2010b) Trawl capture of Port Jackson sharks, Heterodontus portusjacksoni, and gummy sharks, Mustelus antarcticus, in a controlled setting: effects of tow duration, air exposure and crowding. Fish Res 106:344–350

    Article  Google Scholar 

  • Frick LH, Walker TI, Reina RD (2012) Immediate and delayed effects of gill-net capture on acid-base balance and intramuscular lactate concentration of gummy sharks, Mustelus antarcticus. Comp Biochem Physiol A Mol Integr Physiol 162:88–93

    Article  PubMed  CAS  Google Scholar 

  • Gallagher AJ, Serafy JE, Cooke SJ, Hammerschlag N (2014) Physiological stress response, reflex impairment, and survival of five sympatric shark species following experimental capture and release. Mar Ecol Prog Ser 496:207–218

    Article  Google Scholar 

  • Gamperl, AK, Driedzic, WR (2009) Cardiovascular function and cardiac metabolism. In: Richards JG, Farrell AP, Brauner CJ (eds) Hypoxia, vol 27. Elsevier Academic Press, USA, pp 301–360

  • Giesy JP (1988) Phosphoadenylate concentrations and adenylate energy-charge of largemouth bass (Micropterus salmoides): relationship with condition factor and blood cortisol. Comp Biochem Physiol A Physiol 90:367–377

    Article  CAS  Google Scholar 

  • Haya K, Waiwood BA, Vaneeckhaute L (1985) Disruption of energy metabolism and smoltification during exposure of juvenile Atlantic salmon (Salmo salar) to low pH. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 82:323–329

    Article  CAS  Google Scholar 

  • Heath AG (1984) Changes in tissue adenylates and water content of bluegill, Lepomis macrochirus, exposed to copper. J Fish Biol 24:299–309

    Article  CAS  Google Scholar 

  • Holts DB, Bedford DW (1993) Horizontal and vertical movements of the shortfin mako shark, Isurus oxyrhincus, in the Southern California Bight. Aust J Mar Freshw Res 44:901–909

    Article  Google Scholar 

  • Hyatt MW, Anderson PA, O’Donnell PM, Berzins IK (2012) Assessment of acid-base derangements among bonnethead (Sphyrna tiburo), bull (Carcharhinus leucas), and lemon (Negaprion brevirostris) sharks from gillnet and longline capture and handling methods. Comp Biochem Physiol A Mol Integr Physiol 162:113–120

    Article  PubMed  CAS  Google Scholar 

  • Ip YK, Chew SF (2010) Ammonia production, excretion, toxicity, and defense in fish: a review. Frontiers in Physiology 1:134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jibb LA, Richards JG (2008) AMP-activated protein kinase activity during metabolic rate depression in the hypoxic goldfish, Carassius auratus. J Exp Biol 211:3111–3122

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen JB, Mustafa T (1980) The effect of hypoxia on carbohydrate metabolism in flounder (Platichthys flesus L.)—II. High energy phosphate compounds and the role of glycolytic and gluconeogenetic enzymes. Comp Biochem Physiol B Biochem Mol Biol 67:249–256

    Article  Google Scholar 

  • Konietschke F, Placzek M, Schaarschmidt F, Hothorn LA (2014) nparcomp: an R software package for nonparametric multiple comparisons and simultaneous confidence intervals. J Stat Softw 61:1–17

    Google Scholar 

  • Manire C, Hueter R, Hull E, Spieler R (2001) Serological changes associated with gill-net capture and restraint in three species of sharks. Trans Am Fish Soc 130:1038–1048

    Article  Google Scholar 

  • Marshall H, Field L, Afiadata A, Sepulveda C, Skomal G, Bernal D (2011) Hematological indicators of stress in longline-captured sharks. Comp Biochem Physiol A Mol Integr Physiol 162:121–129

    Article  CAS  Google Scholar 

  • Moyes C, Fragoso N, Musyll M, Brill R (2006) Predicting postrelease survival in large pelagic fish. Trans Am Fish Soc 135:1389–1397

    Article  Google Scholar 

  • Noguchi K, Gel YR, Brunner E, Konietschke F (2012) nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. J Stat Softw 50:1–23

    Article  Google Scholar 

  • Piiper J, Baumgarten D, Meyer M (1970) Effects of hypoxia upon respiration and circulation in the dogfish Scyliorhinus stellaris. Comp Biochem Physiol 36:513–520

    Article  PubMed  CAS  Google Scholar 

  • Renshaw GMC, Kerrisk CB, Nilsson GE (2002) The role of adenosine in the anoxic survival of the epaulette shark, Hemiscyllium ocellatum. Comp Biochem Physiol B Biochem Mol Biol 131:133–141

    Article  PubMed  Google Scholar 

  • Renshaw GMC, Wise G, Dodd PR (2010) Ecophysiology of neuronal metabolism in transiently oxygen-depleted environments: evidence that GABA is accumulated pre-synaptically in the cerebellum. Comp Biochem Physiol A Mol Integr Physiol 155:486–492

    Article  PubMed  CAS  Google Scholar 

  • Renshaw GMC, Kutek AK, Grant GD, Anoopkumar-Dukie S (2012) Forecasting elasmobranch survival following exposure to severe stressors. Comp Biochem Physiol A Mol Integr Physiol 162:101–112

    Article  PubMed  CAS  Google Scholar 

  • Richards JG (2009) Metabolic and molecular responses of fish to hypoxia. In: Richards JG, Farrell AP, Brauner CJ (eds) Hypoxia, vol 27. Elsevier Academic Press, USA, pp 443–485

  • Richards JG, Heigenhauser GJF, Wood CM (2003) Exercise and recovery metabolism in the pacific spiny dogfish (Squalus acanthias). J Comp Physiol B 173:463–474

    Article  PubMed  CAS  Google Scholar 

  • Robbins WD (2006) Evaluation of two underwater biopsy probes for in situ collection of shark tissue samples. Mar Ecol Prog Ser 310:213–217

    Article  Google Scholar 

  • Singer M (1998) Management of multiple organ failure: guidelines but no hard-and-fast rules. J Antimicrob Chemother 41:103–112

    Article  PubMed  CAS  Google Scholar 

  • Skomal GB, Mandelman JW (2012) The physiological response to anthropogenic stressors in marine elasmobranch fishes: a review with a focus on the secondary response. Comp Biochem Physiol A Mol Integr Physiol 162:146–155

    Article  PubMed  CAS  Google Scholar 

  • Soengas JL, Aldegunde M (2002) Energy metabolism of fish brain. Comp Biochem Physiol B Biochem Mol Biol 131:271–296

    Article  PubMed  Google Scholar 

  • Speers-Roesch B, Treberg JR (2010) The unusual energy metabolism of elasmobranch fishes. Comp Biochem Physiol A Mol Integr Physiol 155:417–434

    Article  PubMed  CAS  Google Scholar 

  • Speers-Roesch B, Brauner CJ, Farrell AP, Hickey AJR, Renshaw GMC, Wang YS, Richards JG (2012a) Hypoxia tolerance in elasmobranchs. II. Cardiovascular function and tissue metabolic responses during progressive and relative hypoxia exposures. J Exp Biol 215:103–114

    Article  PubMed  CAS  Google Scholar 

  • Speers-Roesch B, Richards JG, Brauner CJ, Farrell AP, Hickey AJ, Wang YS, Renshaw GM (2012b) Hypoxia tolerance in elasmobranchs. I. Critical oxygen tension as a measure of blood oxygen transport during hypoxia exposure. J Exp Biol 215:93–102

    Article  PubMed  CAS  Google Scholar 

  • Speers-Roesch B, Mandic M, Groom DJE, Richards JG (2013) Critical oxygen tensions as predictors of hypoxia tolerance and tissue metabolic responses during hypoxia exposure in fishes. J Exp Mar Biol Ecol 449:239–249

    Article  CAS  Google Scholar 

  • Stenslokken KO, Sundin L, Renshaw GMC, Nilsson GE (2004) Adenosinergic and cholinergic control mechanisms during hypoxia in the epaulette shark (Hemiscyllium ocellatum), with emphasis on branchial circulation. J Exp Biol 207:4451–4461

    Article  PubMed  CAS  Google Scholar 

  • Storey KB, Storey JM (2005) Oxygen limitation and metabolic rate depression. In: KB Storey (ed) Functional metabolism. Wiley, USA, pp 415–442

  • Sugaya M, Yasuda T, Suga T, Okita K, Abe T (2011) Change in intramuscular inorganic phosphate during multiple sets of blood flow-restricted low-intensity exercise. Clin Physiol Funct Imaging 31:411–413

    Article  PubMed  Google Scholar 

  • Tresise MM, Mokae MLL, Wagenaar GM, Van Dyk JC (2014) A proposed liver needle core biopsy technique for the sharptooth catfish Clarias gariepinus (Burchell) for use in fish health research. J Fish Dis 37:931–934

    Article  PubMed  CAS  Google Scholar 

  • van den Thillart G, Kesbeke F, Waarde AV (1980) Anaerobic energy-metabolism of goldfish, Crassius auratus (L.)—influence of hypoxia and anoxia on phosphorylated compounds and gycogen. J Comp Physiol 136:45–52

    Article  Google Scholar 

  • Van der Boon J, de Jong RL, Van den Thillart G, Addink ADF (1992) Reversed-phase ion-paired HPLC of purine nucleotides from skeletal muscle, heart and brain of the goldfish, Crassius auratus L.-II. Influence of environmental anoxia on metabolite levels. Comp Biochem Physiol B Biochem Mol Biol 101:583–586

    Article  Google Scholar 

  • Van Rijn JA, Reina RD (2010) Distribution of leukocytes as indicators of stress in the Australian swellshark, Cephaloscyllium laticeps. Fish Shellfish Immunol 29:534–538

    Article  PubMed  CAS  Google Scholar 

  • Vetter RD, Hodson RE (1982) Use of adenylate concentrations and andenylate energy-charge as indicators of hypoxic stress in estuarine fish. Can J Fish Aquat Sci 39:535–541

    Article  CAS  Google Scholar 

  • Yoshino M, Yamamoto C, Murakami K, Katsumata Y, Mori S (1992) Stabilization of the adenylate energy charge—charge in erythrocytes of rats and humans at high-altitude hypoxia. Comp Biochem Physiol A Physiol 101:65–68

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Carolina and Thomas Weller, Derek Dapp, Lauren Hall and Ricky Tate for fieldwork and manuscript assistance. We thank Roderick Watson and Elizabeth McGrath from the Victorian Marine Science Consortium (VMSC) and Phillip Holt from Monash University for logistical assistance. Funding for this study was provided by the Australian Research Council (ARC) Linkage Grant LP110200572, the Department of Economic Development, Jobs, Transport and Resources Victoria, Australian Fisheries Management Authority (AFMA) and Melbourne Aquarium. This study was conducted in accordance with Monash University Animal Ethics approval number BSCI/2012/16 and DELWP Fisheries permit number RP1115.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonardo Guida or Richard D. Reina.

Additional information

Communicated by G. Heldmaier.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guida, L., Walker, T.I. & Reina, R.D. The adenylate energy charge as a new and useful indicator of capture stress in chondrichthyans. J Comp Physiol B 186, 193–204 (2016). https://doi.org/10.1007/s00360-015-0948-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0948-y

Keywords

Navigation