Skip to main content
Log in

Simulations of high harmonic generation from plasmonic nanoparticles in the terahertz region

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Metallic nanostructures are known for enhancing weak nonlinear processes when a resonant and coherent excitation takes place. With proper structural design, an additional boost of particular nonlinear processes is expected to be possible. Here, we present a numerical technique that is capable of simulating high harmonic generation from resonantly excited metallic nanoparticles in the terahertz frequency range. We demonstrate our method by investigating the nonlinear emission of arrays of plasmonic split-ring resonators at the range of ten terahertzs. Our multiscale, non-perturbative, and microscopic approach is based on a self-consistent combination of a hydrodynamic model for the nonlinear electronic material response and the discontinuous Garlerkin time-domain technique for the evaluation of the propagation of the electromagnetic field. It is predicted that the electronic nonlinearities of plasmonic nanoparticles give rise to several harmonics in the light emission when excited by intense terahertz radiation. Furthermore, our analysis predicts a non-perturbative scaling of higher harmonics at high excitation intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77–79 (2001)

    Article  ADS  Google Scholar 

  2. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Nature 355, 376–379 (2008)

    Article  ADS  Google Scholar 

  3. A.J. Ward, J.B. Pendry, J. Mod. Opt. 43, 773–793 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. U. Leonhardt, T.G. Philbin, New J. Phys. 8, 247 (2006)

    Article  ADS  Google Scholar 

  5. U. Leonhardt, Science 312, 1777–1780 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. J.B. Pendry, D. Schurig, D.R. Smith, Science 312, 1780–1782 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Technol. 47, 2075–2084 (1999)

    Article  ADS  Google Scholar 

  8. M.W. Klein, C. Enkrich, M. Wegener, J. Förstner, J.V. Moloney, W. Hoyer, T. Stroucken, M. Meier, S.W. Koch, S. Linden: Photonic Metamaterials: From Random to Periodic Technical Digest (Optical Society of America), paper TuC5 (2006)

  9. N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, S. Linden, Opt. Express 18, 6545–6554 (2010)

    Article  ADS  Google Scholar 

  10. Y. Zeng, W. Hoyer, J. Liu, S.W. Koch, J.V. Moloney, Phys. Rev. B 79, 235109 (2009)

    Article  ADS  Google Scholar 

  11. F.B.P. Niesler, N. Feth, S. Linden, M. Wegener, Opt. Lett. 36, 1533 (2011)

    Article  ADS  Google Scholar 

  12. Y. Grynko, T. Meier, S. Linden, F.B.P. Niesler, M. Wegener, J. Förstner, SPIE OPTO, 86230L-86230L-9 (2013)

  13. S. Chen, G. Li, F. Zeuner, W.H. Wong, E.Y.B. Pun, T. Zentgraf, K.W. Cheah, S. Zhang, Phys. Rev. Lett. 113, 033901 (2014)

    Article  ADS  Google Scholar 

  14. G. Li, S. Chen, N. Pholchai, B. Reineke, P.W.H. Wong, E.Y.B. Pun, K.W. Cheah, T. Zentgraf, S. Zhang, Nat. Mater. 14, 607 (2015)

    Article  ADS  Google Scholar 

  15. J.I. Dadap, J. Shan, K.B. Eisenthal, T.F. Heinz, Phys. Rev. Lett. 83, 4045 (1999)

    Article  ADS  Google Scholar 

  16. C.I. Valencia, E.R. Mendez, B.S. Mendoza, JOSA B 20, 2150–2161 (2003)

    Article  ADS  Google Scholar 

  17. A. Dähn, W. Hübner, K.H. Bennemann, Phys. Rev. Lett. 77, 3929 (1996)

    Article  ADS  Google Scholar 

  18. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, P.F. Brevet, Nano Lett. 10, 1717 (2010)

    Article  ADS  Google Scholar 

  19. I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, P.F. Brevet, J. Phys. Chem. C 111(111), 9044 (2007)

    Article  Google Scholar 

  20. S. Kujala, B.K. Canfield, M. Kauranen, Y. Svirko, J. Turunen, Opt. Exp. 16, 17196–17208 (2008)

    Article  ADS  Google Scholar 

  21. J. Butet, P.F. Brevet, O.J.F. Martin, ACS Nano 9, 10545–10562 (2015)

    Article  Google Scholar 

  22. M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, M. Fiebig, Appl. Phys. B 105, 149–162 (2011)

    Article  ADS  Google Scholar 

  23. S. Linden, F.B.P. Niesler, J. Förstner, Y. Grynko, T. Meier, M. Wegener, Phys. Rev. Lett. 109, 015502 (2012)

    Article  ADS  Google Scholar 

  24. M. Kauranen, A.V. Zayats, Nat. Photon. 6, 737 (2012)

    Article  ADS  Google Scholar 

  25. N. Bloembergen, R.K. Chang, S.S. Jha, C.H. Lee, Phys. Rev. 174, 813–822 (1968)

    Article  ADS  Google Scholar 

  26. T. Utikal, T. Zentgraf, T. Paul, K. Rockstuhl, F. Lederer, M. Lippitz, H. Giessen, Phys. Rev. Lett. 106, 133901 (2011)

    Article  ADS  Google Scholar 

  27. B.S. Mendoza, W.L. Mochan, Phys. Rev. B 53, 4999 (1995)

    Article  ADS  Google Scholar 

  28. J.E. Sipe, V.C.Y. So, M. Fukui, G.I. Stegeman, Phys. Rev. B 21, 4389–4402 (1980)

    Article  ADS  Google Scholar 

  29. A. Capretti, C. Forestiere, L. Dal Negro, G. Miano, Plasmonics 9, 151 (2014)

    Article  Google Scholar 

  30. R. Alaee, C. Menzel, A. Banas, K. Banas, S. Xu, H. Chen, H.O. Moser, F. Lederer, C. Rockstuhl, Phys. Rev. B 87, 075110 (2013)

    Article  ADS  Google Scholar 

  31. J.S. Hesthaven, T. Warburton, J. Comp. Phys. 181, 186–221 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  32. J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods (Springer, New York, 2008)

    Book  MATH  Google Scholar 

  33. J. Niegemann, M. König, K. Stannigel, K. Busch, Photon. Nanostruct. Fundam. Appl. 7, 2 (2009)

    Article  ADS  Google Scholar 

  34. K. Stannigel, M. König, J. Niegemann, K. Busch, Opt. Express 17, 14934–14947 (2009)

    Article  ADS  Google Scholar 

  35. J. Niegemann, W. Pernice, K. Busch, J. Opt. A Pure Appl. Opt. 11, 114015 (2009)

    Article  ADS  Google Scholar 

  36. A. Hille, R. Kullock, S. Grafstrom, L.M. Eng, J. Comput. Theor. Nanosci. 7, 1581–1586 (2010)

    Article  Google Scholar 

  37. M. König, J. Niegemann, K. Busch, Photon. Nanostruct. Fundam. Appl. 8, 303 (2010)

    Article  ADS  Google Scholar 

  38. J. Niegemann, R. Diehl, K. Busch, J. Comp. Phys. 231, 364–372 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  39. K. Busch, M. König, J. Niegemann, Laser Photon. Rev. 5, 773 (2011)

    Article  Google Scholar 

  40. M. H. Carpenter, C. A. Kennedy: Tech. Re NASA-TM-109112, NASA Langley Research Center, VA, USA (1994)

  41. www.nudg.com

  42. J. Liu, M. Brio, Y. Zeng, A. Zakharian, W. Hoyer, S.W. Koch, J.V. Moloney, J. Comput. Phys. 229, 5921–5932 (2010)

    Article  ADS  Google Scholar 

  43. I. Akhiezer, Plasma Electrodynamics, vol. II (Pergamon Press, Oxford, New York, 1975)

    Google Scholar 

  44. M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander, C.A. Ward, Appl. Opt. 22, 1099–1119 (1983)

    Article  ADS  Google Scholar 

  45. P. Bodenheimer et al., Numerical Methods in Astrophysics: An Introduction (CRC Press, Boca Raton, 2006)

    Google Scholar 

  46. P. Guyot-Sionnest, W. Chen, Y.R. Shen, Phys. Rev. B 33, 8254 (1986)

    Article  ADS  Google Scholar 

  47. W.J. Padilla, Opt. Express 15, 1639–1646 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  48. N.A. Papadogiannis, S.D. Moustaizis, Opt. Commun. 137, 174–180 (1997)

    Article  ADS  Google Scholar 

  49. N.A. Papadogiannis, P.A. Loukakos, S.D. Moustaizis, Opt. Commun. 166, 133–139 (1999)

    Article  ADS  Google Scholar 

  50. A.T. Georges, N.E. Karatzas, Appl. Phys. B 81, 479–485 (2005)

    Article  ADS  Google Scholar 

  51. J. Alberti, H. Linnenbank, S. Linden, Y. Grynko, J. Förstner, Appl. Phys. B 122, 45 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the priority program SPP 1391, the Emmy-Noether program, and the SFB TRR 142. Computing time was granted by the Paderborn Center for Parallel Computing (PC\(^2\)) and Jülich Supercomputing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevgen Grynko.

Additional information

This article is part of the topical collection “Ultrafast Nanooptics” guest edited by Martin Aeschlimann and Walter Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grynko, Y., Zentgraf, T., Meier, T. et al. Simulations of high harmonic generation from plasmonic nanoparticles in the terahertz region. Appl. Phys. B 122, 242 (2016). https://doi.org/10.1007/s00340-016-6510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6510-0

Keywords

Navigation