Skip to main content
Log in

Towards a quantum interface between telecommunication and UV wavelengths: design and classical performance

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We propose and characterize a quantum interface between telecommunication wavelengths (1311 nm) and an Yb\({}^{+}\)-dipole transition (369.5 nm) based on a second-order sum-frequency process in a PPKTP waveguide. An external (internal) conversion efficiency above 5 % (10 %) is shown using classical bright light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.J. Kimble, The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  2. S. Olmschenk, D. Hayes, D.N. Matsukevich, P. Maunz, D.L. Moehring, C. Monroe, Quantum logic between distant trapped ions. Int. J. Quantum Inf. 8, 337 (2010)

    Article  MATH  Google Scholar 

  3. P. Kumar, Quantum frequency conversion. Opt. Lett. 15, 1476–1478 (1990)

    Article  ADS  Google Scholar 

  4. J. Huang, P. Kumar, Observation of quantum frequency conversion. Phys. Rev. Lett. 68, 2153–2156 (1992)

    Article  ADS  Google Scholar 

  5. A.P. Vandevender, P.G. Kwiat, High efficiency single photon detection via frequency up-conversion. J. Mod. Opt. 51, 1433–1445 (2004)

    Article  ADS  MATH  Google Scholar 

  6. M.A. Albota, F.N.C. Wong, Efficient single-photon counting at 1.55\(\mu\)m by means of frequency upconversion. Opt. Lett. 29, 1449–1451 (2004)

    Article  ADS  Google Scholar 

  7. M.G. Raymer, K. Srinivasan, Manipulating the color and shape of single photons. Phys. Today 65, 32 (2012)

    Article  Google Scholar 

  8. M.T. Rakher, L. Ma, O. Slattery, X. Tang, K. Srinivasan, Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion. Nat. Photonics 4, 786–791 (2010)

    Article  ADS  Google Scholar 

  9. S. Ates, I. Agha, A. Gulinatti, I. Rech, M.T. Rakher, A. Badolato, K. Srinivasan, Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett. 109, 147405 (2012)

    Article  ADS  Google Scholar 

  10. S. Zaske, A. Lenhard, C.A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012)

    Article  ADS  Google Scholar 

  11. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, Wide-band quantum interface for visible-to-telecommunication wavelength conversion. Nat. Commun. 2, 1544 (2011)

    Article  Google Scholar 

  12. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, H. Zbinden, A photonic quantum information interface. Nature 437, 116–120 (2005)

    Article  ADS  Google Scholar 

  13. C.E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, R. Schnabel, Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm. Phys. Rev. Lett. 112, 073602 (2014)

    Article  ADS  Google Scholar 

  14. D. Kong, Z. Li, S. Wang, X. Wang, Y. Li, Quantum frequency down-conversion of bright amplitude-squeezed states. Opt. Express 22, 24192–24201 (2014)

    Article  ADS  Google Scholar 

  15. S. Wang, V. Pasiskevicius, F. Laurell, H. Karlsson, Ultraviolet generation by first-order frequency doubling in periodically poled \(\text{ KTiOPO }_4\). Opt. Lett. 23, 1883–1885 (1998)

    Article  ADS  Google Scholar 

  16. P. Qing, X. Yang, Long pulse, high energy output at 365 nm from an frequency-doubled Alexandrite laser. Opt. Commun. 200, 309–314 (2001)

    Article  ADS  Google Scholar 

  17. D.B. Oh, Diode-laser-based sum-frequency generation of tunable wavelength-modulated UV light for OH radical detection. Opt. Lett. 20, 100–102 (1995)

    Article  ADS  Google Scholar 

  18. L. Corner, J. Gibb, G. Hancock, A. Hutchinson, V. Kasyutich, R. Peverall, G. Ritchie, Sum frequency generation at 309nm using a violet and a near-IR DFB diode laser for detection of OH. Appl. Phys. B 74, 441–444 (2002)

    Article  ADS  Google Scholar 

  19. D.J. Berkeland, F.C. Cruz, J.C. Bergquist, Sum-frequency generation of continuous-wave light at 194 nm. Appl. Opt. 36, 4159–4162 (1997)

    Article  ADS  Google Scholar 

  20. N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, Z.-G. Hu, M. Yoshimura, Y. Mori, T. Sasaki, 200-mw-average power ultraviolet generation at 0.193 \(\mu\)m in \(\text{ K }_2\text{ Al }_2\text{ B }_2 \text{ O }_7\). Appl. Opt. 42, 2716–2719 (2003)

    Article  ADS  Google Scholar 

  21. H. Kumagai, K. Midorikawa, T. Iwane, M. Obara, Efficient sum-frequency generation of continuous-wave single-frequency coherent light at 252 nm with dual wavelength enhancement. Opt. Lett. 28, 1969–1971 (2003)

    Article  ADS  Google Scholar 

  22. J. Franzke, Sum frequency generation at 365 nm by two diode lasers applied to the detection of mercury. Spectrochim. Acta Part B Atom. Spectrosc. 53, 1595–1599 (1998)

    Article  ADS  Google Scholar 

  23. R.V. Roussev, C. Langrock, J.R. Kurz, M.M. Fejer, Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths. Opt. Lett. 29, 1518–1520 (2004)

    Article  ADS  Google Scholar 

  24. R. Clark, T. Kim, J. Kim, Double-stage frequency down-conversion system for distribution of ion-photon entanglement over long distances, in 2011 IEEE Photonics Society Summer Topical Meeting Series, (IEEE, 2011)

  25. M. Pysher, R. Bloomer, C.M. Kaleva, T.D. Roberts, P. Battle, O. Pfister, Broadband amplitude squeezing in a periodically poled \(\text{ KTiOPO }_4\) waveguide. Opt. Lett. 34, 256–258 (2009)

    Article  ADS  Google Scholar 

  26. N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P.M. Ledingham, H. de Riedmatten, Storage of up-converted telecom photons in a doped crystal. New J. Phys. 16, 113021 (2014)

    Article  Google Scholar 

  27. J.S. Pelc, L. Ma, C.R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, M.M. Fejer, Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Opt. Express 19, 21445–21456 (2011)

    Article  ADS  Google Scholar 

  28. G.E. Kugel, F. Brehat, B. Wyncke, M.D. Fontana, G. Marnier, C. Carabatos-Nedelec, J. Mangin, The vibrational spectrum of a KTiOPO4 single crystal studied by raman and infrared reflectivity spectroscopy. J. Phys. C Solid State Phys. 21, 5565 (1988)

    Article  ADS  Google Scholar 

  29. D.L. Moehring, P. Maunz, S. Olmschenk, K.C. Younge, D.N. Matsukevich, L.-M. Duan, C. Monroe, Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007)

    Article  ADS  Google Scholar 

  30. R. Maiwald, A. Golla, M. Fischer, M. Bader, S. Heugel, B. Chalopin, M. Sondermann, G. Leuchs, Collecting more than half the fluorescence photons from a single ion. Phys. Rev. A 86, 043431 (2012)

    Article  ADS  Google Scholar 

  31. N. Trautmann, J.Z. Bernád, M. Sondermann, G. Alber, L.L. Sánchez-Soto, G. Leuchs, Generation of entangled matter qubits in two opposing parabolic mirrors. Phys. Rev. A 90, 063814 (2014)

    Article  ADS  Google Scholar 

  32. J.D. Bierlein, A. Ferretti, L.H. Brixner, W.Y. Hsu, Fabrication and characterization of optical waveguides in \(\text{ KTiOPO }_4\). Appl. Phys. Lett. 50, 1216–1218 (1987)

    Article  ADS  Google Scholar 

  33. K. Kato, E. Takaoka, Sellmeier and thermo-optic dispersion formulas for KTP. Appl. Opt. 41, 5040–5044 (2002)

    Article  ADS  Google Scholar 

  34. P.T. Callahan, K. Safak, P. Battle, T.D. Roberts, F.X. Kärtner, Fiber-coupled balanced optical cross-correlator using PPKTP waveguides. Opt. Express 22, 9749–9758 (2014)

    Article  ADS  Google Scholar 

  35. K.A. Fedorova, G.S. Sokolovskii, P.R. Battle, D.A. Livshits, E.U. Rafailov, 574–647 nm wavelength tuning by second-harmonic generation from diode-pumped PPKTP waveguides. Opt. Lett. 40, 835–838 (2015)

    Article  ADS  Google Scholar 

  36. R. Roussev, Optical-frequency mixers in periodically poled lithium niobate: Materials, modeling and characterization, Ph.D. thesis, Stanford University (2006)

  37. A.H. Reshak, I.V. Kityk, S. Auluck, Investigation of the linear and nonlinear optical susceptibilities of \(\text{ KTiOPO }_4\) single crystals: Theory and experiment. J. Phys. Chem. B 114, 16705–16712 (2010)

    Article  Google Scholar 

  38. G. Hansson, H. Karlsson, S. Wang, F. Laurell, Transmission measurements in KTP and isomorphic compounds. Appl. Opt. 39, 5058–5069 (2000)

    Article  ADS  Google Scholar 

  39. S. Wang, V. Pasiskevicius, F. Laurell, Dynamics of green light-induced infrared absorption in \(\text{ KTiOPO }_4\) and periodically poled \(\text{ KTiOPO }_4\). J. Appl. Phys. 96, 2023–2028 (2004)

    Article  ADS  Google Scholar 

  40. Y. Colombe, D.H. Slichter, A.C. Wilson, D. Leibfried, D.J. Wineland, Single-mode optical fiber for high-power, low-loss uv transmission. Opt. Express 22, 19783–19793 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Harald Herrmann for helpful discussions and also the reviewers for useful comments, contributing to improve the manuscript. We acknowledge financial support provided by the German Bundesministerium für Bildung und Forschung within the QuOReP and Q.com-Q framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Rütz.

Additional information

This paper is part of the topical collection “Quantum Repeaters: From Components to Strategies” guest edited by Manfred Bayer, Christoph Becher and Peter van Loock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rütz, H., Luo, KH., Suche, H. et al. Towards a quantum interface between telecommunication and UV wavelengths: design and classical performance. Appl. Phys. B 122, 13 (2016). https://doi.org/10.1007/s00340-016-6325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6325-z

Keywords

Navigation