Skip to main content
Log in

The role of electromagnetic interactions in second harmonic generation from plasmonic metamaterials

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on second harmonic generation spectroscopy on a series of rectangular arrays of split-ring resonators. Within the sample series, the lattice constants are varied, but the area of the unit cell is kept fixed. The SHG signal intensity of the different arrays upon resonant excitation of the fundamental plasmonic mode strongly depends on the respective arrangement of the split-ring resonators. This finding can be explained by variations of the electromagnetic interactions between the split-ring resonators in the different arrays. The experimental results are in agreement with numerical calculations based on the discontinuous Galerkin time-domain method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Nat. Mater. 9, 193–204 (2010)

    Article  ADS  Google Scholar 

  2. M. Kauranen, A.V. Zayats, Nat. Photon. 6, 737–748 (2012)

    Article  ADS  Google Scholar 

  3. B. Lamprecht, A. Leitner, A. Aussenegg, Appl. Phys. B 64, 269–272 (1997)

    Article  ADS  Google Scholar 

  4. B.K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, M. Kauranen, Nano Lett. 7, 1251–1255 (2007)

    Article  ADS  Google Scholar 

  5. M.W. Klein, C. Enkrich, M. Wegener, S. Linden, Science 313, 502–504 (2006)

    Article  ADS  Google Scholar 

  6. F.B.P. Niesler, N. Feth, S. Linden, M. Wegener, Opt. Lett. 36, 1533–1535 (2011)

    Article  ADS  Google Scholar 

  7. M.J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, M. Kauranen, Opt. Mater. Express 1, 46–56 (2011)

    Article  Google Scholar 

  8. K. Thyagarajan, S. Rivier, A. Lovera, O.J.F. Martin, Opt. Express 20, 12860–12865 (2012)

    Article  ADS  Google Scholar 

  9. H. Aouani, M. Navarro-Cia, M. Rahmani, T.P.H. Sidiropoulos, M. Hong, R.F. Oulton, S.A. Maier, Nano Lett. 12, 4997–5002 (2012)

    Article  ADS  Google Scholar 

  10. B. Lamprecht, J.R. Krenn, A. Leitner, F.R. Aussenegg, Phys. Rev. Lett. 83, 4421–4424 (1999)

    Article  ADS  Google Scholar 

  11. B. Metzger, M. Hentschel, M. Lippitz, H. Giessen, Opt. Lett. 37, 4741–4743 (2012)

    Article  ADS  Google Scholar 

  12. T. Hanke, G. Krauss, D. Trutlein, B. Wild, R. Bratschitsch, A. Leitenstorfer, Phys. Rev. Lett. 103, 257404 (2009)

    Article  ADS  Google Scholar 

  13. M. Hentschel, T. Utikal, H. Giessen, M. Lippitz, Nano Lett. 12, 3778–3782 (2012)

    Article  ADS  Google Scholar 

  14. B. Metzger, T. Schumacher, M. Hentschel, M. Lippitz, H. Giessen, ACS Photon. 1, 471–476 (2014)

    Article  Google Scholar 

  15. R. Czaplicki, H. Husu, R. Siikanen, J. Mkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, M. Kuittinen, Phys. Rev. Lett. 110, 093902 (2013)

    Article  ADS  Google Scholar 

  16. S. Linden, F.B.P. Niesler, J. Förstner, Y. Grynko, T. Meier, M. Wegener, Phys. Rev. Lett. 109, 015502 (2012)

    Article  ADS  Google Scholar 

  17. H. Linnenbank, S. Linden, Opt. Express 22, 18072–18077 (2014)

    Article  ADS  Google Scholar 

  18. C. Rockstuhl, T. Zentgraf, C. Etrich, J. Kuhl, F. Lederer, H. Giessen, Opt. Express 14, 8827–8836 (2006)

    Article  ADS  Google Scholar 

  19. I. Sersic, M. Frimmer, E. Verhagen, A.M. Koenderink, Phys. Rev. Lett. 103, 213902 (2009)

    Article  ADS  Google Scholar 

  20. N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, S. Linden, Opt. Express 18, 6545–6554 (2010)

    Article  ADS  Google Scholar 

  21. B. Lamprecht, G. Schider, R.T. Lechner, H. Ditlbacher, J.R. Krenn, A. Leitner, F.R. Aussenegg, Phys. Rev. Lett. 84, 4721–4724 (2000)

    Article  ADS  Google Scholar 

  22. M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, F. Ciccacci, M. Finazzi, Nat. Nanotechnol. 10, 412–417 (2015)

    Article  ADS  Google Scholar 

  23. J.S. Hesthaven, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (Springer, New York, 2008)

    Book  MATH  Google Scholar 

  24. K. Stannigel, M. König, J. Niegemann, K. Busch, Opt. Express 17, 14934 (2009)

    Article  ADS  Google Scholar 

  25. A. Akhiezer, Plasma Electrodynamics: Nonlinear Theory and Fluctuations, vol. 2 (Pergamon, New York, 1975)

    Google Scholar 

  26. Y. Zeng, W. Hoyer, J. Liu, S.W. Koch, J.V. Moloney, Phys. Rev. B 79, 235109 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) through programs SPP1391 (S.L. and J.F.) and TRR142 (J.F.). Computing time was granted by the Paderborn Center for Parallel Computing (PC2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Linden.

Additional information

This article is part of the topical collection “Ultrafast Nanooptics” guest edited by Martin Aeschlimann and Walter Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberti, J., Linnenbank, H., Linden, S. et al. The role of electromagnetic interactions in second harmonic generation from plasmonic metamaterials. Appl. Phys. B 122, 45 (2016). https://doi.org/10.1007/s00340-015-6311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-015-6311-x

Keywords

Navigation