Skip to main content
Log in

Quantum interference control of electrical currents in GaAs microstructures: physics and spectroscopic applications

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a comprehensive study of coherently controlled charge currents in electrically contacted GaAs microdevices. Currents are generated all-optically by phase-related femtosecond \(\omega /2\omega\) pulse pairs and are often linked to the third-order optical nonlinearity \(\chi ^{(3)}(0;\omega ,\omega ,-2\omega )\). Here, we first focus on elevated irradiances where absorption saturation and ultimately the onset of Rabi oscillations contribute to the optical response. In particular, we identify clear departures of the injected current from the \(\chi ^{(3)}\)-expectation \({\mathrm {d}}J/{\mathrm {d}}t \propto E_\omega ^2 E_{2\omega }\). Theoretical simulations for the coherently controlled current based on the semiconductor Bloch equations agree well with the experimental trends. We then move on to investigate spectroscopic applications of the quantum interference control technique. In particular, we implement a versatile scheme to analyze the phase structure of femtosecond pulses. It relies on phase-sensitive \(\chi ^{(3)}\)-current injection driven by two time-delayed portions of the \(\omega\)/\(2\omega\) pulse pair. Most strikingly, the group velocity dispersions of both the \(\omega\) and \(2\omega\) components can be unambiguously determined from a simple Fourier transform of the resulting current interferogram. Finally, we aim to use femtosecond \(\omega /2\omega\) pulse pairs to demonstrate a theoretically proposed scheme for all-optical current detection in thin GaAs membranes. However, we find the signal to be superimposed by second harmonic generation related to the electric field inducing the current. As a result, the currents’ signature cannot be unambiguously identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Atanasov, A. Haché, J.L.P. Hughes, H.M. van Driel, J.E. Sipe, Phys. Rev. Lett. 76, 1703 (1996)

    Article  ADS  Google Scholar 

  2. A. Haché, Y. Kostoulas, R. Atanasov, J.L.P. Hughes, J.E. Sipe, H.M. van Driel, Phys. Rev. Lett. 78, 306 (1997)

    Article  ADS  Google Scholar 

  3. L. Costa, M. Betz, M. Spasenović, A.D. Bristow, H.M. van Driel, Nat. Phys. 3, 632 (2007)

    Article  Google Scholar 

  4. C. Ruppert, S. Thunich, G. Abstreiter, A. Fontcuberta i Morral, A.W. Holleitner, M. Betz, Nano Lett. 10, 1799 (2010)

    Article  ADS  Google Scholar 

  5. J. Güdde, M. Rohleder, T. Meier, S.W. Koch, U. Höfer, Science 318, 1287 (2007)

    Article  ADS  Google Scholar 

  6. D.A. Bas, K. Vargas-Velez, S. Babakiray, T.A. Johnson, P. Borisov, T.D. Stanescu, D. Lederman, A.D. Bristow, Appl. Phys. Lett. 106, 041109 (2015)

    Article  ADS  Google Scholar 

  7. E. Sternemann, T. Jostmeier, C. Ruppert, H.T. Duc, T. Meier, M. Betz, Phys. Rev. B 88, 165204 (2013)

    Article  ADS  Google Scholar 

  8. E. Sternemann, M. Betz, C. Ruppert, Opt. Lett. 39, 3654 (2014)

    Article  ADS  Google Scholar 

  9. J.-T. Liu, F.-H. Su, X.-H. Deng, H. Wang, Opt. Express 20, 11694 (2012)

    Article  ADS  Google Scholar 

  10. R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, 2003)

    Book  Google Scholar 

  11. B. Pasenow, H.T. Duc, T. Meier, S.W. Koch, Solid State Commun. 145, 61–65 (2008)

    Article  ADS  Google Scholar 

  12. H.T. Duc, J. Frstner, T. Meier, Phys. Rev. B 82, 115316 (2010)

    Article  ADS  Google Scholar 

  13. R. Podzimski, H.T. Duc, T. Meier, Proc. SPIE 9361, 93611V (2015)

    Article  ADS  Google Scholar 

  14. P. Roos, Q. Quraishi, S. Cundiff, R. Bhat, J.E. Sipe, Opt. Express 11, 2081 (2003)

    Article  ADS  Google Scholar 

  15. R. Trebino, K.W. Delong, D.N. Fittinghoff, J.N. Sweetser, M.A. Krumbügel, B.A. Richman, D.J. Kane, Rev. Sci. Instrum. 68, 3277 (1997)

    Article  ADS  Google Scholar 

  16. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer, Nature 414, 286 (2001)

    Article  ADS  Google Scholar 

  17. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, R. Huber, Nat. Photonics 5, 31 (2011)

    Article  ADS  Google Scholar 

  18. S. Thunich, C. Ruppert, A.W. Holleitner, M. Betz, Opt. Lett. 36, 1791 (2011)

    Article  ADS  Google Scholar 

  19. J.E. Chamberlain, J.E. Gibbs, H.A. Gebbie, Nature 198, 874 (1963)

    Article  ADS  Google Scholar 

  20. M. Born, E. Wolf, Principles of Optics, 7th expanded edn. (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  21. D.D. Bhawalkar, L.G. Nair, S.C. Mehendale, Opt. Commun. 23, 427 (1977)

    Article  ADS  Google Scholar 

  22. Code for retrieving a pulse intensity and phase from Its FROG Trace. Available from the Trebino group at http://frog.gatech.edu/code.html

  23. B.A. Ruzicka, L.K. Werake, G. Xu, J.B. Khurgin, E.Y. Sherman, J.Z. Wu, H. Zhao, Phys. Rev. Lett. 108, 077403 (2012)

    Article  ADS  Google Scholar 

  24. J.L.P. Hughes, J.E. Sipe, Phys. Rev. B 53, 10751 (1996)

    Article  ADS  Google Scholar 

  25. S. Buckley, M. Radulaski, K. Biermann, J. Vuckovic, Appl. Phys. Lett. 103, 211117 (2013)

    Article  ADS  Google Scholar 

  26. C.H. Lee, R.K. Chang, N. Bloembergen, Phys. Rev. Lett. 18, 167 (1967)

    Article  ADS  Google Scholar 

  27. P. Godefroy, W. de Jong, C.W. van Hasselt, M.A.C. Devillers, T. Rasing, Appl. Phys. Lett. 68, 1981 (1996)

    Article  ADS  Google Scholar 

  28. J. Miragliotta, D.K. Wickenden, Phys. Rev. B 53, 1388 (1996)

    Article  ADS  Google Scholar 

  29. P.T. Wilson, Y. Jiang, O.A. Aktsipetrov, E.D. Mishina, M.C. Downer, Opt. Lett. 24, 496 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The experimental work presented in this review article has been supported by the DFG within the priority program SPP1391 “Ultrafast Nanooptics” (Grant BE3752/4-2). The most recent work has also been supported by the SFB TRR 142 of the DFG. The theory part has been supported by the DFG-Project ME 1916/2 and in the framework of the research training group GRK 1464. C. R. acknowledges support by the Alexander von Humboldt-foundation. We thank A. W. Holleitner for help with the microstructure fabrication and contributions to the early optical experiments. We also thank D. Schuh, W. Wegscheider, and S. Malzer for providing the LT-GaAs material and the electrically contacted GaAs thin film.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Betz.

Additional information

This article is part of the topical collection “Ultrafast Nanooptics” guest edited by Martin Aeschlimann and Walter Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sternemann, E., Jostmeier, T., Ruppert, C. et al. Quantum interference control of electrical currents in GaAs microstructures: physics and spectroscopic applications. Appl. Phys. B 122, 44 (2016). https://doi.org/10.1007/s00340-015-6310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-015-6310-y

Keywords

Navigation