Skip to main content
Log in

Liquid-nitrogen cooled, free-running single-photon sensitive detector at telecommunication wavelengths

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The measurement of light characteristics at the single- and few photon level plays a key role in many quantum optics applications. Often photodetection is preceded with the transmission of quantum light over long distances in optical fibers with their low loss window near 1550 nm. Nonetheless, the detection of the photonic states at telecommunication wavelengths via avalanche photodetectors has long been facing severe restrictions. Only recently, demonstrations of the first free-running detector techniques in the telecommunication band have lifted the demand of synchronizing the signal with the detector. Moreover, moderate cooling is required to gain single-photon sensitivity with these detectors. Here, we implement a liquid-nitrogen cooled negative-feedback avalanche diode (NFAD) at telecommunication wavelengths and investigate the properties of this highly flexible, free-running single-photon sensitive detector. Our realization of cooling provides a large range of stable operating temperatures and has advantages over the relatively bulky commercial refrigerators that have been used before. We determine the region of NFAD working parameters most suitable for single-photon sensitive detection enabling a direct plug-in of our detector to a true photon-counting task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Rev. Sci. Instrum. 82, 071101 (2011)

    Article  ADS  Google Scholar 

  2. B.E. Kardynal, Z.L. Yuan, A.J. Shields, Nat. Photon. 2, 425 (2008)

    Article  Google Scholar 

  3. A.E. Lita, A.J. Miller, S.-W. Nam, Opt. Express 16, 3032 (2008)

    Article  ADS  Google Scholar 

  4. T. Gerrits, S. Glancy, T.S. Clement, B. Calkins, A.E. Lita, A.J. Miller, A.L. Migdall, S.W. Nam, R.P. Mirin, E. Knill, Phys. Rev. A 82, 031802(R) (2010)

    Article  ADS  Google Scholar 

  5. E. Waks, E. Diamanti, B.C. Sanders, S.D. Bartlett, Y. Yamamoto, Phys. Rev. Lett. 92, 113602 (2004)

    Article  ADS  Google Scholar 

  6. C.K. Hong, L. Mandel, Phys. Rev. Lett. 56, 58 (1986)

    Article  ADS  Google Scholar 

  7. M. Bondani, A. Allevi, A. Andreoni, Opt. Lett. 34, 1444 (2009)

    Article  ADS  Google Scholar 

  8. C. Silberhorn, Contemp. Phys. 48, 143 (2007)

    Article  ADS  Google Scholar 

  9. G.S. Buller, R.J. Collins, Meas. Sci. Technol. 21, 012002 (2010)

    Article  ADS  Google Scholar 

  10. R.H. Hadfield, Nat. Photon. 3, 696 (2009)

    Article  ADS  Google Scholar 

  11. D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, I.A. Wamsley, Opt. Lett. 28, 2387 (2003)

    Article  ADS  Google Scholar 

  12. M.J. Fitch, B.C. Jacobs, T.B. Pittman, J.D. Franson, Phys. Rev. A 68, 043814 (2003)

    Article  ADS  Google Scholar 

  13. R.T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, A. Rochas, Appl. Phys. Lett. 91, 201114 (2007)

    Article  ADS  Google Scholar 

  14. R.E. Warburton, M. Itzler, G.S. Buller, Appl. Phys. Lett. 94, 071116 (2009)

    Article  ADS  Google Scholar 

  15. R. Warburton, M. Itzler, G. Buller, Eletron. Lett. 45, 996 (2009)

    Article  Google Scholar 

  16. Z. Yan, D.R. Hamel, A.K. Heinrichs, X. Jiang, M.A. Itzler, T. Jennewein, Rev. Sci. Instrum. 83, 073105 (2012)

    Article  ADS  Google Scholar 

  17. B. Korzh, N. Walenta, T. Lunghi, N. Gisin, H. Zbinden, Appl. Phys. Lett. 104, 081108 (2014)

    Article  ADS  Google Scholar 

  18. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, Appl. Opt. 35, 1956 (1996)

    Article  ADS  Google Scholar 

  19. T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M.A. Itzler, H. Zbinden, J. Mod. Opt. 59, 1481 (2012)

    Article  ADS  Google Scholar 

  20. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  21. P.L. Voss, K.G. Köprülü, S.-K. Choi, S. Dugan, P. Kumar, J. Mod. Opt. 51, 1369 (2004)

    ADS  Google Scholar 

Download references

Acknowledgments

We thank Henning Weier (qutools) the support with discriminator boards required for operating our NFADs. Additionally, we thank Armin Sailer and Gerhard Hendl for helping with the mechanical and electrical construction of the detector and Raimund Ricken for the assistance with the waveguide fabrication. This work was supported in part by the European Research Council (ERC) through project EnSeNa (257531) and the Austrian Science Fund (FWF) through project no. I-2065-N27.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Laiho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Covi, M., Pressl, B., Günthner, T. et al. Liquid-nitrogen cooled, free-running single-photon sensitive detector at telecommunication wavelengths. Appl. Phys. B 118, 489–495 (2015). https://doi.org/10.1007/s00340-015-6019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6019-y

Keywords

Navigation