Skip to main content
Log in

Subhertz-linewidth infrared frequency source with a long-term instability below 5 × 10−15

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Distributing a stable, absolute optical reference frequency via fiber network would serve research and development in academia and industry. Lasers stabilized to high-finesse Fabry–Pérot cavities can achieve fractional frequency instabilities of less than 10−15 for periods up to several seconds. Their instabilities increase for longer averaging times due to a variable frequency drift, with a linear drift component of the order of 10…100 mHz/s. Hydrogen masers, on the other hand, yield an instability floor of a few parts in 10−15, but suffer from poor stabilities on short timescales. We demonstrate an infrared optical frequency source that combines a cavity-stabilized laser with a hydrogen maser to achieve a residual fractional frequency instability better than 5 × 10−15 for all averaging times from 0.4 up to 10,000 s. The frequency drift of the system over a period of 40,000 s is less than 30 µHz/s. For obtaining absolute frequency accuracy, the hydrogen maser is referenced to a primary frequency standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Predehl, G. Grosche, S.M.F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T.W. Hänsch, Th. Udem, R. Holzwarth, H. Schnatz, Science 336, 441 (2012)

    Article  ADS  Google Scholar 

  2. B.C. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist, Phys. Rev. Lett. 82, 3799 (1999)

    Article  ADS  Google Scholar 

  3. Y.Y. Jiang, A.D. Ludlow, N.D. Lemke, R.W. Fox, J.A. Sherman, L.-S. Ma, C.W. Oates, Nat. Photonics 5, 158 (2011)

    Article  ADS  Google Scholar 

  4. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, J. Ye, Nat. Photonics 6, 687 (2012)

    Google Scholar 

  5. J. Alnis, A. Matveev, N. Kochalevsky, Th. Udem, T.W. Hänsch, Phys. Rev. A 77, 053809 (2008)

    Article  ADS  Google Scholar 

  6. C.G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, T.W. Hänsch, Phys. Rev. Lett. 107, 203001 (2011)

    Article  ADS  Google Scholar 

  7. T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319, 1808 (2008)

    Article  ADS  Google Scholar 

  8. N.D. Lemke, A.D. Ludlow, Z.W. Barber, T.M. Fortier, S.A. Diddams, Y. Jiang, S.R. Jefferts, T.P. Heavner, T.E. Parker, C.W. Oates, Phys. Rev. Lett. 103, 063001 (2009)

    Article  ADS  Google Scholar 

  9. C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010)

    Article  ADS  Google Scholar 

  10. St. Falke, H. Schnatz, J.S.R. Vellore Winfred, Th. Middelmann, St. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, Ch. Lisdat, Metrologia 48, 399 (2011)

    Article  ADS  Google Scholar 

  11. N. Huntemann, N. Okhapkin, B. Lipphardt, S. Weyers, Chr. Tamm, E. Peik, Phys. Rev. Lett. 108, 090801 (2012)

    Article  ADS  Google Scholar 

  12. O. Terra, G. Grosche, H. Schnatz, Opt. Express 18, 16102 (2010)

    Article  ADS  Google Scholar 

  13. P. Dubé, A.A. Madej, J.E. Bernard, L. Marmet, A.D. Shiner, Appl. Phys. B 95, 43 (2009)

    Article  ADS  Google Scholar 

  14. R. Storz, C. Braxmaier, K. Jäck, O. Pradl, S. Schiller, Opt. Lett. 23, 1031 (1998)

    Article  ADS  Google Scholar 

  15. Q.-F. Chen, A. Troshyn, I. Ernsting, S. Kayser, S. Vasilyev, A. Nevsky, S. Schiller, Phys. Rev. Lett. 107, 223202 (2011)

    Article  ADS  Google Scholar 

  16. M.J. Thorpe, L. Rippe, T.M. Fortier, M.S. Kirchner, T. Rosenband, Nat. Photonics 5, 688 (2011)

    Article  ADS  Google Scholar 

  17. J. Reichert, M. Nierung, R. Holzwarth, M. Weitz, Th. Udem, T.W. Hänsch, Phys. Rev. Lett. 84, 3232 (2000)

    Article  ADS  Google Scholar 

  18. A. Bauch, S. Weyers, D. Piester, E. Staliuniene, W. Yang, Metrologia 49, 180 (2012)

    Article  ADS  Google Scholar 

  19. O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, H. Schnatz, Appl. Phys. B 97, 541 (2009)

    Article  ADS  Google Scholar 

  20. A. Pape, O. Terra, J. Friebe, M. Riedmann, T. Wübbena, E.M. Rasel, K. Predehl, T. Legero, B. Lipphardt, H. Schnatz, G. Grosche, Opt. Express 18, 21477–21483 (2010)

    Article  Google Scholar 

  21. S. Weyers, B. Lipphardt, H. Schnatz, Phys. Rev. A 79, 031803 (2009)

    Article  ADS  Google Scholar 

  22. P. Kubina, P. Adel, F. Adler, G. Grosche, T.W. Hänsch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, H. Schnatz, Opt. Express 13, 904–909 (2005)

    Article  ADS  Google Scholar 

  23. J.D.H. Alexander, Electron. Lett. 11, 541 (1975)

    Article  ADS  Google Scholar 

  24. G. Kramer, W. Klische, in Proc. IEEE Int. Symp. Time Freq. 144 (2001)

  25. S.T. Dawkins, J.J. McFerran, A.N. Luiten, IEEE Trans. Ultras. Ferroel. Freq. Control 54, 918–925 (2007)

    Article  Google Scholar 

  26. A. Bartels, C.W. Oates, L. Hollberg, S.A. Diddams, Opt. Lett. 29, 1081 (2004)

    Article  ADS  Google Scholar 

  27. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, F.-L. Hong, Opt. Express 18, 1667 (2010)

    Article  ADS  Google Scholar 

  28. F. Kéfélian, H. Jiang, P. Lemonde, G. Santarelli, Opt. Lett. 34, 914 (2009)

    Article  ADS  Google Scholar 

  29. D.R. Leibrandt, M.J. Thorpe, J.C. Bergquist, T. Rosenband, Opt. Express 19, 10278–10286 (2011)

    Article  ADS  Google Scholar 

  30. Mention of specific products and trade names is for technical communication only and does not constitute an endorsement or recommendation by PTB.

Download references

Acknowledgments

The authors would like to thank A. Bauch for providing the maser signals and for very helpful comments and discussions, as well as S. Weyers for providing the cesium fountain data and for helpful comments. This work was supported by the European Metrological Research Programme EMRP under SIB-02 NEAT-FT and IND 014. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. Support by the Centre of Quantum Engineering and Space-Time Research (QUEST) is gratefully acknowledged. Mention of specific products and trade names is for technical communication only and does not constitute an endorsement or recommendation by PTB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. F. Raupach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raupach, S.M.F., Legero, T., Grebing, C. et al. Subhertz-linewidth infrared frequency source with a long-term instability below 5 × 10−15 . Appl. Phys. B 110, 465–470 (2013). https://doi.org/10.1007/s00340-012-5280-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5280-6

Keywords

Navigation