Skip to main content
Log in

Electrically tunable polarizer based on anisotropic absorption of graphene ribbons

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We theoretically demonstrate that an electrically tunable polarizer can be obtained using a periodic array of graphene ribbons supported on a dielectric film on top of a thick piece of metal. The polarizing mechanism originates from anisotropic absorption of the graphene ribbons. The results of fullwave numerical simulations reveal that absorption of 0.0075 for one polarization and 0.9986 for another polarization can be obtained at normal incidence in the THz range. For circular incidence polarization, the corresponding polarizing extinction ratio increases to 65 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Lajunen, J. Turunen, J. Tervo, Design of polarization gratings for broadband illumination. Opt. Express 13, 3055–3067 (2005)

    Article  ADS  Google Scholar 

  2. R. Magnusson, M. Shokooh-Saremi, E.G. Johnson, Guided-mode resonant wave plates. Opt. Lett. 35, 2472–2474 (2010)

    Article  ADS  Google Scholar 

  3. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305, 788–792 (2004)

    Article  ADS  Google Scholar 

  4. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C.M. Soukoulis, Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004)

    Article  ADS  Google Scholar 

  5. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  6. H. Jiaming, Y. Yu, R. Lixin, J. Tao, K.J. Au, C.T. Chan, Z. Lei, Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 99, 063908 (2007)

    Article  ADS  Google Scholar 

  7. A.V. Rogacheva, V.A. Fedotov, A.S. Schwanecke, N.I. Zheludev, Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett. 97, 177401 (2006)

    Article  ADS  Google Scholar 

  8. E. Plum, X.X. Liu, V.A. Fedotov, Y. Chen, D.P. Tsai, N.I. Zheludev, Metamaterials: optical activity without chirality. Phys. Rev. Lett. 102, 113902 (2009)

    Article  ADS  Google Scholar 

  9. Z.H. Zhu, H. Liu, S.M. Wang, W.M. Ye, X.D. Yuan, S.N. Zhu, Double-resonance nanolaser based on coupled slit-hole resonator structures. Opt. Lett. 35, 754–756 (2010)

    Article  ADS  Google Scholar 

  10. R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, K.L. Kavanagh, Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett. 92, 037401 (2004)

    Article  ADS  Google Scholar 

  11. Z.H. Zhu, C.C. Guo, K. Liu, W.M. Ye, X.D. Yuan, B. Yang, T. Ma, Metallic nanofilm half-wave plate based on magnetic plasmon resonance. Opt. Lett. 37, 698–700 (2012)

    Article  ADS  Google Scholar 

  12. A. Drezet, C. Genet, T.W. Ebbesen, Miniature plasmonic wave plates. Phys. Rev. Lett. 101, 043902 (2008)

    Article  ADS  Google Scholar 

  13. M. Freitag, T. Low, F. Xia, P. Avouris, Photoconductivity of biased grapheme. Nat. Photonics 7, 53–59 (2013)

    Article  ADS  Google Scholar 

  14. M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, P. Avouris, Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 4, 1951 (2013)

    Article  ADS  Google Scholar 

  15. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, A graphene-based broadband optical modulator. Nature 474, 64–67 (2011)

    Article  ADS  Google Scholar 

  16. B. Sensale-Rodriguez, T. Fang, R. Yan, M.M. Kelly, D. Jena, L. Liu, H. (Grace) Xing, Unique prospects for graphene-based terahertz modulators. Appl. Phys. Lett. 99, 113104 (2011)

    Article  ADS  Google Scholar 

  17. B. Sensale-Rodriguez, R. Yan, M. Kelly, Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 3, 780–787 (2012)

    Article  ADS  Google Scholar 

  18. S.H. Lee, M. Choi, T–.T. Kim, S. Lee, M. Liu, X. Yin, H.K. Choi, S.S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mat. 11, 936–941 (2012)

    Article  Google Scholar 

  19. A. Andryieuski, A. Lavrinenko, D. Chigrin, Graphene hyperlens for terahertz radiation. Phys. Rev. B 86, 121108(R) (2012)

    Article  ADS  Google Scholar 

  20. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, F. Xia, Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotech. 7, 330–334 (2012)

    Article  ADS  Google Scholar 

  21. A. Fallahi, J. Perruisseau-Carrier, Design of tunable biperiodic graphene metasurfaces. Phys. Rev. B 86, 195408 (2012)

    Article  ADS  Google Scholar 

  22. S. Thongrattanasiri, F. Koppens, F. Garc′ıa de Abajo, Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012)

    Article  ADS  Google Scholar 

  23. A. Andryieuski, A.V. Lavrinenko, Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt. Express 21, 9144–9155 (2013)

    Article  ADS  Google Scholar 

  24. R. Alaee, M. Farhat, C. Rockstuhl, F. Lederer, A perfect absorber made of a graphene micro-ribbon metamaterial. Opt. Express 20, 28017–28024 (2012)

    Article  ADS  Google Scholar 

  25. B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M.M. Kelly, D. Jena, L. Liu, H.G. Xing, Extraordinary control of terahertz beam reflectance in graphene electroabsorption modulators. Nano Lett. 12, 4518–4522 (2012)

    Article  ADS  Google Scholar 

  26. A. Nikitin, F. Guinea, F. Garcia-Vidal, L. Martin-Moreno, Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys. Rev. B 85, 081405 (2012)

    Article  ADS  Google Scholar 

  27. A.Y. Nikitin, F. Guinea, L. Martin-Moreno, Resonant plasmonic effects in periodic graphene antidot arrays. Appl. Phys. Lett. 101, 151119 (2012)

    Article  ADS  Google Scholar 

  28. Q. Bao, H. Zhang, B. Wang, Z. Ni, C.H. Lim, Y. Wang, D.Y. Tang, K.P. Loh, Broadband graphene polarizer. Nat. Photonics 5, 411–415 (2011)

    Article  ADS  Google Scholar 

  29. A. Vakil, N. Engheta, Transformation optics using graphene. Science 332(6035), 1291–1294 (2011)

    Article  ADS  Google Scholar 

  30. N.K. Emani, T.-F. Chung, X. Ni, A.V. Kildishev, Y.P. Chen, A. Boltasseva, Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 12, 5202–5206 (2012)

    Article  ADS  Google Scholar 

  31. L.A. Falkovsky, S.S. Pershoguba, Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76, 153410 (2007)

    Article  ADS  Google Scholar 

  32. T. Søndergaard, J. Beermann, A. Boltasseva, S.I. Bozhevolnyi, Slow plasmon resonant-nanostrip antennas: analysis and demonstration. Phys. Rev. B 77, 011520 (2008)

    Article  Google Scholar 

  33. Z.H. Zhu, Z.H. Han, S.I. Bozhevolnyi, Wide bandwidth polarization-independent optical band-stop filter based on plasmonic nanoantennas. Appl. Phys. A 110, 71–75 (2013)

    Article  ADS  Google Scholar 

  34. A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics. Nat. Photonics 6, 749–758 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Key Program for Basic Research of China (No. 2012CB933501), the National Natural Science Foundation of China (Grant Nos. 61177051 and 61205087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z.H., Guo, C.C., Liu, K. et al. Electrically tunable polarizer based on anisotropic absorption of graphene ribbons. Appl. Phys. A 114, 1017–1021 (2014). https://doi.org/10.1007/s00339-014-8269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8269-7

Keywords

Navigation