Skip to main content
Log in

Effect of laser annealing using high repetition rate pulsed laser on optical properties of phosphorus-ion-implanted ZnO nanorods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of high repetition rate pulsed laser annealing with a KrF excimer laser on the optical properties of phosphorus-ion-implanted zinc oxide nanorods has been investigated. The recovery levels of phosphorus-ion-implanted zinc oxide nanorods have been measured by photoluminescence spectra and cathode luminescence images. Cathode luminescence disappeared over 300 nm below the surface due to the damage caused by ion implantation with an acceleration voltage of 25 kV. When the annealing was performed at a low repetition rate of the KrF excimer laser, cathode luminescence was recovered only in a shallow area below the surface. The depth of the annealed area was increased along with the repetition rate of the annealing laser. By optimizing the annealing conditions such as the repetition rate, the irradiation fluence and so on, we have succeeded in annealing the whole damaged area of over 300 nm in depth and in observing cathode luminescence. Thus, the effectiveness of high repetition rate pulsed laser annealing on phosphorus-ion-implanted zinc oxide nanorods was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.H. Lim, C.K. Kang, K.K. Kim, I.K. Park, D.K. Hwang, S.J. Park, Adv. Mater. 18, 2770 (2006)

    Article  Google Scholar 

  2. S. Chu, J.H. Lim, L.J. Mandalapu, Z. Yang, L. Li, J.L. Liu, Appl. Phys. Lett. 92, 152103 (2008)

    Article  ADS  Google Scholar 

  3. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  4. M. Lorenz, A. Rahm, B. Cao, J.Z. Perez, E.M. Kaidashev, N. Zhakarov, G. Wagner, T. Nobis, C. Czekalla, G. Zimmermann, M. Grundmann, Phys. Status Solidi B 247, 1265 (2010)

    Article  ADS  Google Scholar 

  5. Z.W. Liu, C.K. Ong, T. Yu, Z.X. Shen, Appl. Phys. Lett. 88, 053110 (2009)

    Article  ADS  Google Scholar 

  6. B. Kumar, S.W. Kim, Nano Energy 1, 342 (2012)

    Article  Google Scholar 

  7. S. Bai, W. Wu, Y. Qin, N. Cui, D.J. Bayerl, X. Wang, Adv. Funct. Mater. 21, 4464 (2011)

    Article  Google Scholar 

  8. S. Chu, M. Olmedo, Z. Yang, J. Kong, J. Liu, Appl. Phys. Lett. 93, 181106 (2008)

    Article  ADS  Google Scholar 

  9. K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Omura, S.F. Chichibu, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Appl. Phys. Lett. 97, 013501 (2010)

    Article  ADS  Google Scholar 

  10. K.G. Saw, K. Ibrahim, Y.T. Lim, M.K. Chai, Thin Solid Films 515, 2879 (2007)

    Article  ADS  Google Scholar 

  11. M.T. Chen, M.P. Lu, Y.J. Wu, J. Song, C.Y. Lee, M.Y. Lu, Y.C. Chang, L.J. Chou, Z.L. Wang, L.J. Chen, Nano Lett. 10, 4387 (2010)

    Article  ADS  Google Scholar 

  12. V. Vaithianathan, B.T. Lee, S.S. Kim, J. Appl. Phys. 98, 043519 (2005)

    Article  ADS  Google Scholar 

  13. T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, Y. Hatanaka, Phys. Status Solidi B 229, 911 (2002)

    Article  ADS  Google Scholar 

  14. X.W. Sun, B. Ling, J.L. Zhao, S.T. Tan, Y. Yang, Y.Q. Shen, Z.L. Dong, X.C. Li, Appl. Phys. Lett. 95, 133124 (2009)

    Article  ADS  Google Scholar 

  15. Y. Yang, X.W. Sun, B.K. Tay, G.F. You, S.T. Tan, K.L. Teo, Appl. Phys. Lett. 93, 253107 (2008)

    Article  ADS  Google Scholar 

  16. Z.Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, H. Yan, X.L. Yuan, T. Sekiguchi, R. Suzuki, T. Ohdaira, J. Appl. Phys. 97, 013528 (2005)

    Article  ADS  Google Scholar 

  17. G.P. Merceroz, F. Donatini, R. Thierry, P.H. Jouneau, P. Ferret, G. Feuillet, J. Appl. Phys. 111, 083524 (2012)

    Article  ADS  Google Scholar 

  18. T.N. Lin, C.P. Huang, G.W. Shu, J.L. Shen, C.S. Hsiao, S.Y. Chen, Phys. Status Solidi A 209, 1461 (2012)

    Article  ADS  Google Scholar 

  19. S. Wei, J. Lian, H. Wu, Mater. Charact. 61, 1239 (2010)

    Article  Google Scholar 

  20. T. Shimogaki, K. Okazaki, D. Nakamura, M. Higashihata, T. Asano, T. Okada, Opt. Express 20, 15247 (2012)

    Article  Google Scholar 

  21. J. Maeng, S. Heo, G. Jo, M. Choe, S. Kim, H. Hwang, T. Lee, Nanotechnology 20, 095203 (2009)

    Article  ADS  Google Scholar 

  22. A.B. Hartanto, X. Ning, Y. Nakata, T. Okada, Appl. Phys. A 78, 299 (2004)

    Article  ADS  Google Scholar 

  23. D. Nakamura, A. Kumeda, K. Toya, K. Okazaki, K. Kubo, K. Tsuta, M. Higashihata, T. Okada, in Proc. TENCON 2010 (2010), p. 990

    Google Scholar 

  24. A. Janotti, C.G.V. Walle, Appl. Phys. Lett. 87, 122102 (2005)

    Article  ADS  Google Scholar 

  25. G. Claudio, K.J. Kirkby, M. Bersani, R. Low, B.J. Sealy, R. Gwilliam, J. Appl. Phys. 95, 10 (2004)

    Article  Google Scholar 

  26. X.M. Teng, H.T. Fan, S.S. Pan, C. Ye, G.H. Li, J. Phys. D, Appl. Phys. 39, 471 (2006)

    Article  ADS  Google Scholar 

  27. A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, Spectrochim. Acta, Part B, At. Spectrosc. 58, 1867 (2003)

    Article  ADS  Google Scholar 

  28. Y.M. Lee, H.W. Yang, C.M. Huang, J. Phys. D, Appl. Phys. 45, 225302 (2012)

    Article  ADS  Google Scholar 

  29. Y. Chang, M. Wu, Y. Hung, S. Lin, Rev. Sci. Instrum. 82, 055107 (2011)

    Article  ADS  Google Scholar 

  30. K.P. Ong, D.J. Singh, P. Wu, Phys. Rev. B 83, 115110 (2011)

    Article  ADS  Google Scholar 

  31. B. Haba, B.W. Hussey, A. Gupta, J. Appl. Phys. 69, 2871 (1991)

    Article  ADS  Google Scholar 

  32. A.H. Nejadmalayeri, P.R. Herman, Opt. Express 15, 10842 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Takayuki Takao and Mr. Yosuke Watanabe of the Department of Gigaphoton Next GLP for their support in the experiment. This work was supported in part by the Program under Special Coordination Funds for Promoting Science and Technology from the Japan Science and Technology Agency (JST) and a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS, No. 24656053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Shimogaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimogaki, T., Ofuji, T., Tetsuyama, N. et al. Effect of laser annealing using high repetition rate pulsed laser on optical properties of phosphorus-ion-implanted ZnO nanorods. Appl. Phys. A 114, 625–629 (2014). https://doi.org/10.1007/s00339-013-7638-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7638-y

Keywords

Navigation