Skip to main content

Advertisement

Log in

Temporal and spatial variation in fatty acid composition in Acropora tenuis corals along water quality gradients on the Great Barrier Reef, Australia

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Fatty acids (FA) play a vital role in coral physiology, metabolism and stress resistance. Optimal health requires a balance of fatty acids, and more specifically essential polyunsaturated fatty acids (PUFA), for efficient biochemical and physiological functioning. Therefore, it is necessary to fully assess and evaluate the viability of FA as biomarkers for monitoring the health of coral populations. This study explores seasonal and spatial variation in the abundance of 17 FA in the coral Acropora tenuis, along two water quality gradients on the central Great Barrier Reef. Ratios of key FA varied similarly along the two water quality gradients and were highest in corals from comparatively good water quality conditions. Strong differences in PUFA composition were found between wet and dry seasons, with high percentage n-3 PUFA defining the dry seasons (June 2013 and October 2013) and high percentage n-6 PUFA defining the wet seasons (February 2013 and 2014). Saturated FA and monounsaturated FA concentrations varied with season, positively correlated with Symbiodinium density, and had highest concentrations in corals exposed to relatively poor water quality. Overall, results demonstrate that essential FA and their derived ratios support FA as a potential indicator of coral holobiont health; however, strong seasonal variation may negate FA and their derived ratios as water quality indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ackman RG (2002) The gas chromatograph in practical analyses of common and uncommon fatty acids for the 21st century. Anal Chim Acta 465:175–192

    Article  CAS  Google Scholar 

  • Al-Kandari NM, Jolliffe IT (2005) Variable selection and interpretation in correlation principal components. Environmetrics 16:659–672

    Article  Google Scholar 

  • Al-Moghrabi S, Allemand D, Jaubert J (1993) Valine uptake by the scleractinian coral Galaxea fascicularis: characterization and effect of light and nutritional status. J Comp Physiol B 163:355–362

    Article  CAS  Google Scholar 

  • Al-Moghrabi S, Allemand D, Couret JM, Jaubert J (1995) Fatty acids of the scleractinian coral Galaxea fascicularis: effect of light and feeding. J Comp Physiol B 165:183–192

    Article  Google Scholar 

  • Anderson KD, Heron SF, Pratchett MS (2015) Species-specific declines in the linear extension of branching corals at a subtropical reef, Lord Howe Island. Coral Reefs 34:479–490

    Article  Google Scholar 

  • Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Bio Ecol 252:221–253

    Article  CAS  Google Scholar 

  • Anthony KRN, Connolly SR, Hoegh-Guldberg O (2007) Bleaching, energetics, and coral mortality risk: Effects of temperature, light, and sediment regime. Limnol Oceanogr 52:716–726

    Article  Google Scholar 

  • Armstrong SG, Wyllie SG, Leach DN (1994) Effects of season and location of catch on the fatty acid compositions of some Australian fish species. Food Chem 51:295–305

    Article  CAS  Google Scholar 

  • Bachok Z, Mfilinge P, Tsuchiya M (2006) Characterization of fatty acid composition in healthy and bleached corals from Okinawa, Japan. Coral Reefs 25:545–554

    Article  Google Scholar 

  • Baptista M, Repolho T, Maulvault AL, Lopes VM, Narciso L, Marques A, Bandarra N, Rosa R (2014) Temporal dynamics of amino and fatty acid composition in the razor clam Ensis siliqua (Mollusca: Bivalvia). Helgol Mar Res 68:465–482

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Baumann J, Grottoli AG, Hughes AD, Matsui Y (2014) Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage. J Exp Mar Bio Ecol 461:469–478

    Article  CAS  Google Scholar 

  • Ben-David-Zaslow R, Benayahu Y (1999) Temporal variation in lipid, protein and carbohydrate content in the Red Sea soft coral Heteroxenia fuscenscens. J Mar Biol Assoc UK 79:1001–1006

    Article  CAS  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Bergé J-P, Barnathan G (2005) Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv Biochem Eng Biotechnol 96:49–125

    PubMed  Google Scholar 

  • Brodie JE, Devlin MJ, Haynes D, Waterhouse J (2011) Assessment of the eutrophication status of the Great Barrier Reef lagoon (Australia). Biogeochemistry 106:281–302

    Article  CAS  Google Scholar 

  • Browne NK, Tay JKL, Low J, Larson O, Todd PA (2015) Fluctuations in coral health of four common inshore reef corals in response to seasonal and anthropogenic changes in water quality. Mar Environ Res 105:39–52

    Article  CAS  PubMed  Google Scholar 

  • Bruno JF, Selig ER (2007) Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS One 2

  • Bureau DP, Kaushik SJ, Cho CY (2002) Bioenergetics. In: Halver JE, Hardy RW (eds) Fish Nutrition. Academic Press, San Diego, pp 1–59

    Google Scholar 

  • Clarke SD, Jump DB (1993) Regulation of gene transcription by polyunsaturated fatty acids. Prog Lipid Res 32:139–149

    Article  CAS  PubMed  Google Scholar 

  • Conlan JA, Humphrey CA, Severati A, Francis DS (2017) Influence of different feeding regimes on the survival, growth, and biochemical composition of Acropora coral recruits. PLoS One 12:e0188568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connell JH, Hughes TP, Wallace CC (1997) A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol Monogr 67:461–488

    Article  Google Scholar 

  • Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Lett 11:1304–1315

    Article  PubMed  Google Scholar 

  • Cunning R, Baker AC (2013) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim Chang 3:259–262

    Article  Google Scholar 

  • Dalsgaard J, St John M, Kattner G, Müller-Navarra DC, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340

    Article  PubMed  Google Scholar 

  • De’ath G, Fabricius KE (2010) Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol Appl 20:840–850

    Article  PubMed  Google Scholar 

  • De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci 109:17995–17999

    Article  PubMed  PubMed Central  Google Scholar 

  • Dethier MN, Sosik E, Galloway AWE, Duggins DO, Simenstad CA (2013) Addressing assumptions: Variation in stable isotopes and fatty acids of marine macrophytes can confound conclusions of food web studies. Mar Ecol Prog Ser 478:1–14

    Article  CAS  Google Scholar 

  • Dewick PM (1997) The acetate pathway: fatty acids and polyketides. Medicinal Natural Products. John Wiley & Sons Publishing, New York

    Google Scholar 

  • Dunn SR, Thomas MC, Nette GW, Dove SG (2012) A lipidomic approach to understanding free fatty acid lipogenesis derived from dissolved inorganic carbon within cnidarian-dinoflagellate symbiosis. PLoS One 7

  • Edmunds PJ, Davies PS (1986) An energy budget for Porites porites (Scleractinia). Mar Biol 92:339–347

    Article  Google Scholar 

  • Fabricius KE, Cséke S, Humphrey C, De’ath G (2013a) Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experiment and conceptual framework. PLoS One 8:e54399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabricius KE, De’ath G, Humphrey C, Zagorskis I, Schaffelke B (2013b) Intra-annual variation in turbidity in response to terrestrial runoff on near-shore coral reefs of the Great Barrier Reef. Estuar Coast Shelf Sci 116:57–65

    Article  Google Scholar 

  • Fabricius KE, Logan M, Weeks SJ, Lewis SE, Brodie J (2016) Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013. Estuar Coast Shelf Sci 173:A1–A15

    Article  Google Scholar 

  • Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240

    Article  Google Scholar 

  • Figueiredo J, Baird AH, Cohen MF, Flot JF, Kamiki T, Meziane T, Tsuchiya M, Yamasaki H (2012) Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvae. Coral Reefs 31:613–619

    Article  Google Scholar 

  • Fitt WK, Spero HJ, Halas J, White MW, Porter JW (1993) Recovery of the coral Montastrea annularis in the Florida Keys after the 1987 Caribbean “Bleaching event”. Coral Reefs 12:57–64

    Article  Google Scholar 

  • Flores F, Hoogenboom MO, Smith LD, Cooper TF, Abrego D, Negri AP (2012) Chronic exposure of corals to fine sediments: Lethal and sub-lethal impacts. PLoS One 7:1–12

    Google Scholar 

  • Funk CD (2001) Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science (80-) 294:1871–1875

  • Glencross BD (2009) Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev Aquac 1:71–124

    Article  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Juarez C (2004) Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar Biol 145:621–631

    Article  CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Guil-Guerrero JL (2007) Stearidonic acid (18:4n-3): metabolism, nutritional importance, medical uses and natural sources. Eur J Lipid Sci Technol 109:1226–1236

    Article  CAS  Google Scholar 

  • Harland AD, Davies PS, Fixter LM (1992) Lipid content of some Carribbean corals in relation to depth and light. Mar Biol 113:357–361

    Article  CAS  Google Scholar 

  • Harland AD, Fixter LM, Davies PS, Anderson RA (1991) Distribution of lipids between the zooxanthellae and animal compartment in the symbiotic sea anemone Anemonia viridis: wax esters, triglycerides and fatty acids. Mar Biol 110:13–19

    Article  CAS  Google Scholar 

  • Harland AD, Navarro JC, Davies PS, Fixter LM (1993) Lipids of some Caribbean and Red Sea corals: total lipid, wax esters, triglycerides and fatty acids. Mar Biol 117:113–117

    Article  CAS  Google Scholar 

  • Hazel JR, Eugene Williams E (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs S, Patten NL, Feng M, Strickland D, Waite AM (2013) Which environmental factors predict seasonal variation in the coral health of Acropora digitifera and Acropora spicifera at Ningaloo Reef? PLoS One 8:

  • Hopely D, Smithers SG, Parnell KE (2007) The geomorphology of the Great Barrier Reef: Development, diversity, and change

  • Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17

    Article  PubMed  Google Scholar 

  • Hughes AD, Grottoli AG (2013) Heterotrophic compensation: A possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress? PLoS One 8:1–10

    Google Scholar 

  • Hulbert AJ (2003) Life, death and membrane bilayers. J Exp Biol 206:2303–2311

    Article  CAS  PubMed  Google Scholar 

  • Imbs AB, Dang LPT, Rybin VG, Svetashev VI (2015) Fatty acid, lipid class, and phospholipid molecular species composition of the soft coral Xenia sp. (Nha Trang Bay, the South China Sea, Vietnam). Lipids 50:575–589

    Article  CAS  PubMed  Google Scholar 

  • Imbs AB, Yakovleva IM, Dautova TN, Bui LH, Jones P (2014) Diversity of fatty acid composition of symbiotic dinoflagellates in corals: Evidence for the transfer of host PUFAs to the symbionts. Phytochemistry 101:76–82

    Article  CAS  PubMed  Google Scholar 

  • Imbs AB, Yakovleva IM, Latyshev NA, Pham LQ (2010) Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals. Russ J Mar Biol 36:452–457

    Article  CAS  Google Scholar 

  • Johns RB, Nichols PD, Perry GJ (1979) Fatty acid composition of ten marine algae from australian waters. Phytochemistry 18:799–802

    Article  CAS  Google Scholar 

  • Joseph JD (1979) Lipid composition of marine and estuarine invertebrates: Porifera and Cnidaria. Prog Lipid Res 18:1–30

    Article  CAS  PubMed  Google Scholar 

  • Kabeya N, Fonseca MM, Ferrier DEK, Navarro JC, Bay LK, Francis DS, Tocher DR, Castro LFC, Monroig Ó (2018) Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci Adv 4:eaar6849

  • Kellogg RB, Patton JS (1983) Lipid droplets, medium of energy exchange in the symbiotic anemone Condylactis gigantea: a model coral polyp. Mar Biol 75:137–149

    Article  CAS  Google Scholar 

  • Kenkel CD, Almanza AT, Matz MV (2015) Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys. Ecology 96:3197–3212

    Article  PubMed  Google Scholar 

  • Kneeland J, Hughen K, Cervino J, Hauff B, Eglinton T (2013) Lipid biomarkers in Symbiodinium dinoflagellates: New indicators of thermal stress. Coral Reefs 32:923–934

    Article  Google Scholar 

  • Latyshev NA, Naumenko NV, Svetashev VI, Latypov YY (1991) Fatty acids of reef-building corals. Mar Ecol Prog Ser 76:295–301

    Article  CAS  Google Scholar 

  • Levas S, Grottoli AG, Schoepf V, Aschaffenburg M, Baumann J, Bauer JE, Warner ME (2016) Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals? Coral Reefs 35:495–506

    Article  Google Scholar 

  • Levas S, Schoepf V, Warner ME, Ascha M, Baumann J, Grottoli AG (2018) Long-term recovery of Caribbean corals from bleaching. J Exp Mar Bio Ecol 506:124–134

    Article  CAS  Google Scholar 

  • Meyers PA (1979) Polyunsaturated fatty acids in coral: indicators of nutritional sources. Mar Biol Lett 1:69–75

    CAS  Google Scholar 

  • Meyers PA, Porter JW, Chad RL (1978) Depth analysis of fatty acids in two Caribbean reef corals. Mar Biol 49:197–202

    Article  CAS  Google Scholar 

  • Mika A, Gołeebiowski M, Skorkowski E, Stepnowski P (2014) Lipids of adult brown shrimp, Crangon crangon: Seasonal variations in fatty acids class composition. J Mar Biol Assoc United Kingdom 94:993–1000

    Article  CAS  Google Scholar 

  • Mock T, Kroon BMA (2002) Photosynthetic energy conversion under extreme conditions - II: the significance of lipids under light limited growth in Antarctic sea ice diatoms. Phytochemistry 61:53–60

    Article  CAS  PubMed  Google Scholar 

  • Monroig Ó, Tocher DR, Navarro JC (2013) Biosynthesis of polyunsaturated fatty acids in marine invertebrates: Recent advances in molecular mechanisms. Mar Drugs 11:3998–4018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: Mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Mydlarz LD, McGinty ES, Harvell CD (2010) What are the physiological and immunological responses of coral to climate warming and disease? J Exp Biol 213:934–945

    Article  PubMed  Google Scholar 

  • Nettleton JA (1995) Introduction to fatty acids. Omega-3 Fatty Acids and Health. Chapman & Hall, pp 1–63

  • Nomura M, Kamogawa H, Susanto E, Kawagoe C, Yasui H, Saga N, Hosokawa M, Miyashita K (2013) Seasonal variations of total lipids, fatty acid composition, and fucoxanthin contents of Sargassum horneri (Turner) and Cystoseira hakodatensis (Yendo) from the northern seashore of Japan. J Appl Phycol 25:1159–1169

    Article  CAS  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: community ecology package

  • Oku H, Yamashiro H, Onaga K, Sakai K, Iwasaki H (2003) Seasonal changes in the content and composition of lipids in the coral Goniastrea aspera. Coral Reefs 22:83–85

    Google Scholar 

  • Papina M, Meziane T, van Woesik R (2003) Symbiotic zooxanthellae provide the host-coral Monitpora digitata with polyunsaturated fatty acids. Comp Biochem Physiol Part B Comp Biochem 135:533–537

    Article  CAS  Google Scholar 

  • Patton JS, Burris JE (1983) Lipid synthesis and extrusion by freshly isolated zooxanthellae (symbiotic algae). Mar Biol 75:131–136

    Article  CAS  Google Scholar 

  • Porter JW, Fitt WK, Spero HJ, Rogers CS, White MW (1989) Bleaching in reef corals: physiological and stable isotopic responses. Proc Natl Acad Sci 86:9342–9346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Revel J, Massi L, Mehiri M, Boutoute M, Mayzaud P, Capron L, Sabourault C (2016) Differential distribution of lipids in epidermis, gastrodermis and hosted Symbiodinium in the sea anemone Anemonia viridis. Comp Biochem Physiol -Part A Mol Integr Physiol 191:140–151

    Article  CAS  Google Scholar 

  • Richier S, Sabourault C, Ferrier-Pagès C, Merle P-L, Furla P, Allemand D (2010) Cnidarian-dinoflagellate symbiosis-mediated adapation to environmental perturbations. In: Seckbach J, Grube M (eds) Symbiosis and Stress. Springer, New York, p 651

    Google Scholar 

  • Rocker MM, Francis DS, Fabricius KE, Willis BL, Bay LK (2017) Variation in the health and biochemical condition of the coral Acropora tenuis along two water quality gradients on the Great Barrier Reef, Australia. Mar Pollut Bull 119:106–119

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues LJ, Grottoli AG (2007) Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol Oceanogr 52:1874–1882

    Article  Google Scholar 

  • Russo GL (2009) Dietary n-6 and n-3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol 77:937–946

    Article  CAS  PubMed  Google Scholar 

  • Saunders SM, Radford B, Bourke SA, Thiele Z, Bech T, Mardon J (2005) A rapid method for determining lipid fraction ratios of hard corals under varying sediment and light regimes. Environ Chem 2:331–336

    Article  CAS  Google Scholar 

  • Sebens KP, Vandersall KS, Savina LA, Graham KR (1996) Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Mar Biol 127:303–317

    Article  Google Scholar 

  • Seemann J, Sawall Y, Auel H, Richter C (2013) The use of lipids and fatty acids to measure the trophic plasticity of the coral Stylophora subseriata. Lipids 48:275–286

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688

    Article  CAS  Google Scholar 

  • Singmann H, Bolker B, Westfall J, Aust F (2016) afex: Analysis of factorial experiments

  • Stimson JS (1987) Location, quantity and rate of change in quantity of lipids in tissue of Hawaiian hermatypic corals. Bull Mar Sci 41:889–904

    Google Scholar 

  • Strahl J, Francis DS, Doyle J, Humphrey C, Fabricius KE (2016) Biochemical responses to ocean acidification contrast between tropical corals with high and low abundances at volcanic carbon dioxide seeps. ICES J Mar Sci 73:897–909

    Article  Google Scholar 

  • Sweatman H, Delean S, Syms C (2011) Assessing loss of coral cover on Australia’s Great Barrier Reef over two decades, with implications for longer-term trends. Coral Reefs 30:521–531

    Article  Google Scholar 

  • Szmant-Froelich A, Pilson MEQ (1980) The effects of feeding frequency and symbiosis with zooxanthellae on the biochemical composition of Astrangia danae Milne Edwards & Haime 1849. J Exp Mar Bio Ecol 48:85–97

    Article  CAS  Google Scholar 

  • Teece MA, Estes B, Gelsleichter E, Lirman D (2011) Heterotrophic and autotrophic assimilation of fatty acids by two scleractinian corals, montastraea faveolata and porites astreoides. Limnol Oceanogr 56:1285–1296

    Article  CAS  Google Scholar 

  • Thompson AA, Lonborg C, Costello P, Davidson J, Logan M, Furnas MJ, Gunn K, Liddy M, Skuza M, Uthicke S, Wright M, Zagorskis I, Schaffelke B (2014) Marine Monitoring Program. Annual Report of AIMS Activities 2013-2014 - Inshore water quality and coral reef monitoring. Report for the Great Barrier Reef Marine Park Authority

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184

    Article  CAS  Google Scholar 

  • Tolosa I, Treignier C, Grover R, Ferrier-Pagès C (2011) Impact of feeding and short-term temperature stress on the content and isotopic signature of fatty acids, sterols, and alcohols in the scleractinian coral Turbinaria reniformis. Coral Reefs 30:763–774

    Article  Google Scholar 

  • Treignier C, Grover R, Ferrier-Pagès C, Tolosa I (2008) Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limnol Oceanogr 53:2702–2710

    Article  CAS  Google Scholar 

  • Volkman JK (1999) Australasian research on marine natural products: chemistry, bioactivity and ecology. Mar Freshw Res 50:761–779

    Article  CAS  Google Scholar 

  • Ward S (1995) Two patterns of energy allocation for growth, reproduction and lipid storage in the scleractinian coral Pocillopora damicornis. CoraL Reefs 14:87–90

    Article  Google Scholar 

  • Weber M, de Beer D, Lott C, Polerecky L, Kohls K, Abed RMM, Ferdelman TG, Fabricius KE (2012) Mechanisms of damage to corals exposed to sedimentation. Proc Natl Acad Sci 109:E1558–E1567

    Article  PubMed  PubMed Central  Google Scholar 

  • Wooldridge SA (2009) Water quality and coral bleaching thresholds: Formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia. Mar Pollut Bull 58:745–751

    Article  CAS  PubMed  Google Scholar 

  • Yamashiro H, Oku H, Higa H, Chinen I, Sakai K (1999) Composition of lipids, fatty acids and sterols in Okinawan corals. Comp Biochem Physiol 122:397–407

    Article  Google Scholar 

  • Yamashiro H, Oku H, Onaga K (2005) Effect of bleaching on lipid content and composition of Okinawan corals. Fish Sci 71:448–453

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Britta Schaffelke and the Australian Institute of Marine Science (AIMS) Inshore Marine Monitoring Team (MMP) for logistical and field support, Sam Noonan for field support, and Dr. Jennifer Atherton for comments to improve the manuscript. AIMS Laboratory facilities were used for this study. The Great Barrier Reef Marine Park Authority provided Research Permit No. G35406.1. AIMS, the National Environmental Research Program, the PADI Grant Foundation and the ARC Centre of Excellence for Coral Reef Studies provided funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa M. Rocker.

Ethics declarations

Conflict of interest

All authors have declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Morgan S. Pratchett.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocker, M.M., Francis, D.S., Fabricius, K.E. et al. Temporal and spatial variation in fatty acid composition in Acropora tenuis corals along water quality gradients on the Great Barrier Reef, Australia. Coral Reefs 38, 215–228 (2019). https://doi.org/10.1007/s00338-019-01768-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-019-01768-x

Keywords

Navigation