Skip to main content

Advertisement

Log in

Ecological dynamics in habitat selection of reindeer: an interplay of spatial scale, time, and individual animal's choice

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

While striving for “global” species models of habitat selection, spatiotemporal variation in utilization patterns within a particular habitat and intraspecies variation in space use are still poorly understood. We addressed these challenges by exploring habitat use of domesticated reindeer (Rangifer tarandus tarandus), focusing on factors that underlie ecological dynamics in habitat selection. We analyzed habitat selection of 15 (±2) female reindeer in southern Norway separately for (a) region and home range, (b) seasonality, and (c) each Global Positioning System (GPS)-collared reindeer. We explicitly evaluated spatiotemporal and intraspecies variability in habitat selection by applying multivariate ordination techniques based on the niche concept. In contrast to global assumptions, our results reveal a considerable and partly unpredictable amount of variation in habitat selection resulting from the interplay of spatial scale, time, and individual animal choice. Thus, we conclude that across-scale approaches describing animal space use facilitate better understanding of habitat selection instead of finding a single “best” model that indicates the strongest species–habitat relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albon SD, Langvatn R (1992) Plant phenology and the benefits of migration in a temperate ungulate. Oikos 65:502–513

    Article  Google Scholar 

  • Anderson TA, Johnson CJ (2014) Distribution of barren-ground caribou during winter in response to fire. Ecosphere 5:1–17

    Article  CAS  Google Scholar 

  • Anttonen M, Kumpula J, Colpaert A (2011) Range selection by semi-domesticated reindeer (Rangifer tarandus tarandus) in relation to infrastructure and human activity in the boreal forest environment, Northern Finland. Arctic 64:1–14

  • Bär A, Pape R, Bräuning A, Löffler J (2008) Growth-ring variations of dwarf shrubs reflect regional climate signals in alpine environments rather than micro-climatic differences. J Biogeogr 35:625–636

  • Benhamou S, Riotte-Lambert L (2012) Beyond the utilization distribution: identifying home range areas that are intensively exploited or repeatedly revisited. Ecol Model 227:112–116

    Article  Google Scholar 

  • Björneraas K, Van Moorter B, Rolandsen CM, Herfindal I (2010) Screening global positioning system location data for errors using animal movement characteristics. J Wildl Manag 74:1361–1366

    Article  Google Scholar 

  • Blix AW, Mysterud A, Loe LE, Austrheim G (2014) Temporal scales of density-dependent habitat selection in a large grazing herbivore. Oikos 123:933–942

    Article  Google Scholar 

  • Boyce MS, McDonald LL (1999) Relating populations to habitats using resource selection functions. Trends Ecol Evol 14:268–272

    Article  PubMed  Google Scholar 

  • Calenge C (2006) The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519

    Article  Google Scholar 

  • Calenge C, Basille M (2008) A general framework for the statistical exploration of the ecological niche. J Theor Biol 252:674–685

    Article  PubMed  Google Scholar 

  • Calenge C, Dufour AB, Maillard D (2005) K-select analysis: a new method to analyse habitat selection in radio-tracking studies. Ecol Model 186:143–153

    Article  Google Scholar 

  • Campos FA, Bergstrom FL, Childers A, Hogan JD, Jack KM, Melin AD, Mosdossy KN, Myers MS, Parr NA, Sargeant E, Schoof VAM, Fedigan LM (2014) Drivers of home range characteristics across spatiotemporal scales in a Neotropical primate, Cebus capucinus. Anim Behav 91:93–109

    Article  Google Scholar 

  • Carroll ML, Di Miceli CM, Sohlberg RA, Townshend JRG (2010) 250 m MODIS Normalized Difference Vegetation Index, Collection 4, University of Maryland, College Park. Digital media, Maryland

    Google Scholar 

  • Colman JE, Eidesen R, Hjermann D, Gaup MA, Holand Ø, Moe SR, Reimers E (2004) Reindeer 24-hr within and between group synchronicity in summer versus environmental variables. Rangifer 24:25–30

    Article  Google Scholar 

  • Dolédec S, Chessel D, Gimaret-Carpentier C (2000) Niche separation in community analysis: a new method. Ecology 81:2914–2927

    Article  Google Scholar 

  • ESRI (2010) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Fieberg J (2007) Kernel density estimators of home ranges: smoothing and the autocorrelation red herring. Ecology 88:1059–1066

    Article  PubMed  Google Scholar 

  • Gaillard J-M, Hebblewhite M, Loison A, Fuller M, Powell R, Basille M, Van Moorter B (2010) Habitat-performance relationships: finding the right metric at a given spatial scale. Philos Trans R Soc B Biol Sci 365:2255–2265

    Article  Google Scholar 

  • Gillingham MP, Parker KL (2008) The importance of individual variation in defining habitat selection by moose in northern British Columbia. Alces 44:7–20

    Google Scholar 

  • Gjærevoll O (1956) The plant communities of the Scandinavian alpine snow-beds. Det Kongelige Norske Videnskabers Selskab Skrifter 1, Oslo

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Gustine DD, Parker KL, Lay RJ, Gillingham MP, Heard DC (2006) Calf survival of woodland caribou in a multi-predator ecosystem. Wildl Monogr 165:1–32

    Article  Google Scholar 

  • Hagemoen RIM, Reimers E (2002) Reindeer summer activity pattern in relation to weather and insect harassment. J Anim Ecol 71:883–892

  • Hall DK, Riggs GA, Salomonson VV (2006) MODIS/Terra Snow Cover 8-day L3 Global 500 m Grid V005. National Snow and Ice Data Center, Digital media, Boulder

  • Hemmer H (1990) Domestication: The decline of environmental appreciation. Cambridge University Press, Cambridge

    Google Scholar 

  • Hijmans RJ (2014) raster: Geographic data analysis and modeling. R package version 2.2-31. http://CRAN.R-project.org/package=raster

  • Hirzel A, Hausser J, Chessel D, Perrin N (2002) Ecological niche factor analysis: How to compute habitat suitability maps without absence data? Ecology 83:2027–2036

    Article  Google Scholar 

  • Horn BKP (1981) Hill shading and the reflectance map. Proc IEEE 69:14–47

    Article  Google Scholar 

  • Horne JS, Garton EO, Krone SM, Lewis JS (2007) Analyzing animal movements using Brownian bridges. Ecology 88:2354–2363

    Article  PubMed  Google Scholar 

  • Hutchinson G (1957) The multivariate niche. Cold Spring Harb Symp Quant Biol 22:415–421

    Article  Google Scholar 

  • Iversen M, Fauchald P, Langeland K, Ims RA, Yoccoz NG, Bråthen KA (2014) Phenology and cover of plant growth forms predict herbivore habitat selection in a high latitude ecosystem. PLoS ONE 9:e100780. doi:10.1371/journal.pone.0100780

    Article  PubMed Central  PubMed  Google Scholar 

  • Jernsletten JL, Klokov K (2002) Sustainable reindeer husbandry. Arctic council 2000–2002. Centre for Sami Studies, Tromsø

  • Johansen B (2009) Vegetasjonskart for Norge basert på Landsat TM/ETM+ data. NORUT IT report 4/2009, Tromsø

  • Johnson D (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71

    Article  Google Scholar 

  • Kelsall JP (1968) The migratory barren-ground caribou of Canada. Department of Indian Affairs and Northern Development, Canadian Wildlife Services, Queen’s Printer, Ottawa

    Google Scholar 

  • Leblond M, Frair J, Fortin D, Dussault C, Ouellet J-P, Courtois R (2011) Assessing the influence of resource covariates at multiple spatial scales: an application to forest-dwelling caribou faced with intensive human activity. Landsc Ecol 26:1433–1446

    Article  Google Scholar 

  • Löffler J (2000) High mountain ecosystems and landscape degradation in Northern Norway. Mt Res Dev 20:356–363

  • Löffler J, Finch O-D (2005) Spatio-temporal gradients between high mountain ecosystems of central Norway. Arct Antarct Alp Res 37:499–513

  • Löffler J, Pape R (2008) Diversity patterns in relation to the environment in alpine tundra ecosystems of Northern Norway. Arct Antarct Alp Res 40:373–381

  • Löffler J, Pape R, Wundram D (2006) The climatologic significance of topography, altitude and region in high mountains – a survey of oceanic-continental differentiations of the scandes. Erdkunde 60:15–24

  • Magga OH, Mathiesen SD, Corell RW, Oskal A (2009) Reindeer herding, traditional knowledge and adaptation to climate change and loss of grazing land. A project led by Norway and Association of World Reindeer Herders (WRH) in Arctic Council, Sustainable Development Working Group (SDWG). Alta, Norway

  • Maier JAK, White RG (1998) Timing and synchrony of activity in caribou. Can J Zool 76:1999–2009

    Article  Google Scholar 

  • Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by animals: statistical analysis and design for field studies. Kluwer Academic Publishers, Dordrecht

  • Mårell A, Edenius L (2006) Spatial heterogeneity and hierarchical feeding habitat selection by reindeer. Arct Antarct Alp Res 38:413–420

  • Mayor SJ, Schneider DC, Schaefer JA, Mahoney SP (2009) Habitat selection at multiple scales. EcoScience 16:238–247

    Article  Google Scholar 

  • McLoughlin PD, Morris DW, Fortin D, Van der Wal E, Contasti AL (2010) Considering ecological dynamics in resource selection functions. J Anim Ecol 79:4–12

    Article  PubMed  Google Scholar 

  • Moen J (2008) Climate change: effects on the ecological basis for reindeer husbandry in Sweden. Ambio 37:304–311

  • Mörschel FM (1999) Use of climatic data to model the presence of oestrid flies in caribou herds. J Wildl Manag 63:588–593

  • Mysterud A, Ims RA (1998) Functional responses in habitat use: availability influences relative use in trade-off situations. Ecology 79:1435–1441

    Article  Google Scholar 

  • Mysterud A, Langvatn R, Yoccoz NG, Stenseth NC (2001) Plant phenology, migration and geographical variation in body weight of a large herbivore: the effect of a variable topography. J Anim Ecol 70:915–923

    Article  Google Scholar 

  • Nellemann C, Vistnes I, Jordhøy P, Strand O (2001) Winter distribution of wild reindeer in relation to power lines, roads and resorts. Biol Cons 101:351–360

  • Oksanen L, Moen J, Helle T (1995) Timberline patterns in northernmost Fennoscandia. Relative importance of climate and grazing. Acta Bot Fennica 153:93–105

  • Pajunen A, Virtanen R, Roininen H (2008) The effects of reindeer grazing on the composition and species richness of vegetation in forest–tundra ecotone. Polar Biol 31:1233–1244

  • Panzacchi M, Van Moorter B, Jordhøy P, Strand O (2013) Learning from the past to predict the future: using archeological findings and GPS data to quantify reindeer sensitivity to anthropogenic disturbance in Norway. Landsc Ecol 28:847–859

  • Panzacchi M, Van Moorter B, Strand O, Loe LE, Reimers E (2015) Searching for the fundamental niche using individual-based habitat selection modeling across populations. Ecography 38:1–11

  • Pape R, Löffler J (2004) Spatio-temporal near-surface temperature variation in high mountain landscapes. Ecol Model 178:483–501

  • Pape R, Löffler J (2012) Climate change, land use conflicts, predation and ecological degradation as challenges for reindeer husbandry in northern Europe: What do we really know after half a century of research? Ambio 41:421–434

  • Pettorelli N, Gaillard J-M, Mysterud A, Duncan P, Stenseth NC, Delorme D, Van Laere G, Toigo C, Klein F (2006) Using a proxy of plant productivity (NDVI) to find key periods for animal performance: the case of roe deer. Oikos 112:565–572

    Article  Google Scholar 

  • Pinard V, Dussault C, Ouellet J-P, Fortin D, Courtois R (2012) Calving rate, calf survival rate, and habitat selection of forest-dwelling caribou in a highly managed landscape. J Wildl Manag 76:189–199

    Article  Google Scholar 

  • Putman R, Flueck WT (2011) Intraspecific variation in biology and ecology of deer: magnitude and causation. Anim Prod Sci 51:277–291

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna. http://www.R-project.org

  • Reindriftsforvaltningen (2012) Ressursregnskap for reindriftsnæringen. For reindriftsåret 1. April 2010–2031. March 2011. http://www.reindrift.no/asset/4922/1/4922_1.pdf. Accessed 25 July 2013

  • Reindriftsforvaltningen (2014) Ressursregnskap for reindriftsnæringen. For reindriftsåret 1. April 2012–31. March 2013. http://www.reindrift.no/asset/6800/1/6800_1.pdf. Accessed 30 July 2014

  • Saher DJ, Schmiegelow FKA (2005) Movement pathways and habitat selection by woodland caribou during spring migration. Rangifer Spec Issue 16:143–154

    Article  Google Scholar 

  • Salinas-Melgoza A, Salinas-Melgoza V, Wright TF (2013) Behavioral plasticity of a threatened parrot in human-modified landscapes. Biol Conserv 159:303–312

    Article  Google Scholar 

  • Sandström P, Pahlén TG, Edenius L, Tømmervik H, Hagner O, Hemberg L, Olsson H, Baer K, Stenlund T, Brandt LG, Egberth M (2003) Conflict resolution by participatory management: remote sensing and GIS as tools for communicating land-use needs for reindeer herding in northern Sweden. Ambio 32:557–567

    Article  PubMed  Google Scholar 

  • Senft RL, Coughenour MB, Bailey DW, Rittenhouse LR, Sala OE, Swift DM (1987) Large herbivore foraging and ecological hierarchies. Bioscience 37:789–799

    Article  Google Scholar 

  • Skarin A, Åhman B (2014) Do human activity and infrastructure disturb domesticated reindeer? The need for the reindeer’s perspective. Polar Biol. doi:10.1007/s00300-014-1499-5

    Google Scholar 

  • Skarin A, Danell Ö, Bergström R, Moen J (2008) Summer habitat preferences of GPS-collared reindeer Rangifer tarandus tarandus. Wildl Biol 14:1–15

    Article  Google Scholar 

  • Skarin A, Danell Ö, Bergström R, Moen J (2010) Reindeer movement patterns in alpine summer ranges. Polar Biol 33:1263–1275

    Article  Google Scholar 

  • Skjenneberg S, Slagsvold L (1968) Reindriften og dens naturgrunnlag. Universitetsforlaget, Oslo

    Google Scholar 

  • Skogsstyrelsen (n.d.) Renbetestyper koder och definitioner för fältinventeringen. http://www.skogsstyrelsen.se/PageFiles/12014/Manualer/3.2_Renbetestyper_koder_definitioner.pdf. Accessed 10 Mar 2014

  • Strand O, Falldorf T, Hansen F (2011) A simple time series approach can be used to estimate individual wild reindeer calving dates and calving sites from GPS tracking data. Rangifer Spec Issue 19:163

  • Suominen O, Olofsson J (2000) Impacts of semi-domesticated reindeer on structure of tundra and forest communities in Fennoscandia: a review. Ann Zool Fenn 37:233–249

  • Thomas D, Taylor E (1990) Study designs and tests for comparing resource use and availability. J Wildl Manag 54:322–330

  • Thornton DH, Branch LC, Sunquist ME (2011) The influence of landscape, patch, and within-patch factors on species presence and absence: a review of focal-patch studies. Landsc Ecol 26:7–18

    Article  Google Scholar 

  • Tømmervik H (2007) Dåfjord hyttegrend. Konsekvensvurdering for reindrift. NINA rapport 289, Tromsø

  • Tyler NJC, Turi JM, Sundset MA, Strøm Bull K, Sara MN, Reinert E, Oskal N, Nellemann C, McCarthy JJ, Mathiesen SD, Martello ML, Magga OH, Hovelsrud GK, Hanssen-Bauer I, Eira NI, Eira IMG, Corell RW (2007) Saami reindeer pastoralism under climate change: applying a generalized framework for vulnerability studies to a sub-arctic social–ecological system. Glob Environ Chang 17:191–206

    Article  Google Scholar 

  • Vistnes I, Nellemann C (2008) The matter of spatial and temporal scales: a review of reindeer and caribou response to human activity. Polar Biol 31:399–407

    Article  Google Scholar 

  • Wilson MFJ, O’Connell B, Brown C, Guinan JC, Grehan AJ (2007) Multiscale terrain analysis of multibeam bathymetry data for habitat mapping in the continental slope. Mar Geod 30:3–35

    Article  Google Scholar 

  • Wilson RR, Gilbert-Norton L, Gese EM (2012) Beyond use versus availability: behavior explicit resource selection. Wildl Biol 18:424–430

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the members of Filefjell Reinlag ANS, particularly A. Oppdal and K. Maristuen, for cooperation, hospitality, and support. A. Lundberg (University of Bergen) initiated these contacts, and his long-term cooperation is greatly appreciated. M. Heim from NINA kindly supported this study by processing and supplying the GPS data used for the analyses. The study was funded by the German Research Foundation (DFG, grant number LO 830/16). Finally, we thank the three anonymous reviewers for their valuable input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Pape.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pape, R., Löffler, J. Ecological dynamics in habitat selection of reindeer: an interplay of spatial scale, time, and individual animal's choice. Polar Biol 38, 1891–1903 (2015). https://doi.org/10.1007/s00300-015-1750-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1750-8

Keywords

Navigation