Skip to main content
Log in

Thermal stress responses in Antarctic yeast, Glaciozyma antarctica PI12, characterized by real-time quantitative PCR

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Living organisms have some common and unique strategies to response to thermal stress. However, the amount of data on thermal stress response of certain organism is still lacking, especially psychrophilic yeast from the extreme habitat. Therefore, it is not known whether psychrophilic yeast shares the common responses of other organisms when exposed to thermal stresses. In this work, the cold shock and heat shock responses in Antarctic psychrophilic yeast Glaciozyma antarctica PI12 which had an optimal growth temperature of 12 °C were determined. The expression levels of 14 thermal stress-related genes were measured using real-time quantitative PCR (qPCR) when the yeast cells were exposed to cold shock (0 °C), mild cold shock (5 °C), and heat shock (22 °C) conditions. The expression profiles of the 14 genes at these three temperatures varied indicating that these genes had their specific roles to ensure the survival of the yeast. Under cold shock condition, the afp4 and fad genes were over-expressed possibly as a way for the G. antarctica PI12 to avoid ice crystallization in the cell and to maintain the membrane fluidity. Under the heat shock condition, hsp70 was significantly up-regulated possibly to ensure the proteins fold properly. Among the six oxidative stress-related genes, MnSOD and prx were up-regulated under cold shock and heat shock, respectively, possibly to reduce the negative effects caused by oxidative stress. Interestingly, it was found that the trehalase gene, nth1 that plays a role in degrading excess trehalose, was down-regulated under the heat shock condition possibly as an alternative way to accumulate trehalose in the cells to protecting them from being damaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abele D, Tesch C, Wencke P, Pörtner HO (2001) How do oxidative stress parameters relate to thermal tolerance in the Antarctic bivalve Yoldia eightsi? Antarct Sci 13:111–118

    Article  Google Scholar 

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245

    Article  PubMed  CAS  Google Scholar 

  • Ansaldo M, Polo J, Evelson P, Luqet C, Llesuy S (2000) Antioxidant levels from different Antarctic fish caught around South Georgia Island and Shag Rocks. Polar Biol 23:160–165

    Article  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci India 82:1227–1238

    CAS  Google Scholar 

  • Attfield PV (1987) Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett 225:259–263

    Article  PubMed  CAS  Google Scholar 

  • Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M, Schoppink P, Van der Zee P, Wiemken A (1992) Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur J Biochem 209:951–959

    Article  PubMed  CAS  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  PubMed  CAS  Google Scholar 

  • Borges N, Ramos A, Raven ND, Sharp RJ, Santos H (2002) Comparative study of the thermo stabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles 6:209–216

    Article  PubMed  CAS  Google Scholar 

  • Bravo LA, Griffith M (2005) Characterization of antifreeze activity in Antarctic plants. J Exp Bot 56:1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Cairns A, Howarth CJ, Pollock CJ (1995) Submerged batch culture of the psychrophile Monographella nivalis in a defined medium: growth, carbohydrate utilization and responses to temperature. New Phytol 129:299–308

    Article  Google Scholar 

  • Chen Z, Cheng CH, Zhang J, Cao L, Chen L, Zhou L, Jin Y, Ye H, Deng C, Dai Z, Xu Q, Hu P, Sun S, Shen Y, Chen L (2008) Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Proc Natl Acad Sci USA 105:12944–12949

    Article  PubMed  CAS  Google Scholar 

  • Chong GL, Chu WL, Othman RY, Phang SM (2010) Differential gene expression of an Antarctic chlorella in response to temperature stress. Polar Biol 34:637–645

    Article  Google Scholar 

  • Clark MS, Fraser KPP, Burns G, Peck LS (2008a) The HSP70 heat shock response in the Antarctic fish Harpagifer antarcticus. Polar Biol 31:171–180

    Article  Google Scholar 

  • Clark MS, Fraser KPP, Peck LS (2008b) Lack of an HSP70 heat shock response in two Antarctic marine invertebrates. Polar Biol 31:1059–1065

    Article  Google Scholar 

  • Clarke A, Crame JA (1992) The southern ocean benthic fauna and climate change: a historical perspective. Phil Trans R Soc B 338:299–309

    Article  Google Scholar 

  • Cocca E, Ratnayakelecamwasam M, Parker SK, Camardella L, Ciaramella M, Di Prisco G, Detrich HW (1997) Do the hemoglobinless icefishes have globin genes? Comp Biochem Physiol 118:1027–1030

    Article  Google Scholar 

  • Collén J, Davison IR (2001) Seasonality and thermal acclimation of reactive oxygen metabolism in Fucus vesiculosus (Phaeophyceae). J Phycol 37:474–481

    Article  Google Scholar 

  • Connell L, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459

    Article  PubMed  CAS  Google Scholar 

  • Davies PL, Baardsnes J, Kuiper MJ, Walker VK (2002) Structure and function of antifreeze proteins. Phil Trans R Soc B 357:927–935

    Article  PubMed  CAS  Google Scholar 

  • Deegenaars ML, Watson K (1997) Stress proteins and stress tolerance in an Antarctic psychrophilic yeast, Candida psychrophila. FEMS Microbiol Lett 151:191–196

    Article  PubMed  CAS  Google Scholar 

  • Deegenaars ML, Watson K (1998) Heat shock response in psychrophilic and psychrotrophic yeast from Antarctica. Extremophiles 2:41–49

    Article  PubMed  CAS  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    Article  PubMed  CAS  Google Scholar 

  • Donachie SP (1995) Ecophysiological description of marine bacteria from Admiralty Bay (Antarctica), and the digestive tracts of selected Euphausiidae. Ph. D. Thesis. Department of Antarctic Biology, Polish Academy of Sciences, Warsaw

  • Ermolenko DN, Makhatadze GI (2002) Bacterial cold-shock proteins. Cell Mol Life Sci 59:1902–1913

    Article  PubMed  CAS  Google Scholar 

  • Fell JW, Statzell AC, Hunter IL, Phaff HJ (1969) Leucosporidium gen. n., the heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie Van Leeuwenhoek 35:433–462

    Article  PubMed  CAS  Google Scholar 

  • Fulco AJ, Fuji DK (1980) Adaptive regulation of membrane lipid biosynthesis in bacilli by environmental temperature. In: Kates M, Kuksis A (eds) Membrane fluidity, biophysical techniques and cellular regulation. Humana Press, Totowa, New Jersey, pp 77–98

    Chapter  Google Scholar 

  • Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Article  PubMed  CAS  Google Scholar 

  • Gidekel M, Destefano-Beltrán L, García P, Mujica L, Leal P, Cuba M, Fuentes L, Bravo LA, Corcuera LJ, Alberdi M, Concha I, Gutiérrez A (2003) Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass Deschampsia antarctica Desv. Extremophiles 7:459–469

    Article  PubMed  CAS  Google Scholar 

  • Gilbert JA, Hill PJ, Dodd CE, Laybourn-Parry J (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150:171–180

    Article  PubMed  CAS  Google Scholar 

  • Gocheva YG, Tosi S, Krumova ET, Slokoska LS, Miteva JG, Vassilev SV, Angelova MB (2009) Temperature downshift induces antioxidant response in fungi isolated from Antarctica. Extremophiles 13:273–281

    Article  PubMed  Google Scholar 

  • Gwak IG, Jung W, Kim HJ, Kang SH, Jin E (2009) Antifreeze Protein in Antarctic Marine Diatom, Chaetoceros neogracile. Mar Biotechnol 12:630–639

    Article  PubMed  Google Scholar 

  • Heise K, Puntarulo S, Nikinmaa M, Lucassen M, Pörtner HO, Abele D (2006) Oxidative stress and HIF-1 DNA binding during stressful cold exposure and recovery in the north sea eelpout (Zoarces viviparous). Comp Biochem Physiol 143:494–503

    Article  Google Scholar 

  • Hofmann GE, Buckley BA, Airaksinen S, Keen JE, Somero GN (2000) Heat-shock protein expression is absent in the Antarctic fish Trematomus bernacchii (family Nototheniidae). J Exp Biol 203:2331–2339

    PubMed  CAS  Google Scholar 

  • Hottiger T, Boller T, Wiemken A (1989) Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant? FEBS Lett 255:431–434

    Article  PubMed  CAS  Google Scholar 

  • Howarth CJ, Ougham HJ (1993) Gene expression under temperature stress. New Phytol 125:1–26

    Article  CAS  Google Scholar 

  • Hu H, Li H, Xu X (2008) Alternative cold response modes in Chlorella (Chlorophyta, Trebouxiophyceae) from the Antarctic. Phycologia 47:28–34

    Article  CAS  Google Scholar 

  • Hwang Y, Jung G, Jin E (2008) Transcriptome analysis of acclimatory responses to thermal stress in Antarctic algae. Biochem Biophys Res Comm 367:635–641

    Article  PubMed  CAS  Google Scholar 

  • Inouye M, Phadtare S (2004) Cold shock response and adaptation at near-freezing temperature in microorganisms. Sci STKE 237:26

    Google Scholar 

  • Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1995) The correlative evidence suggesting that trehalose stabilizes membrane structures in the yeast Saccharomyces cerevisiae. Cell Mol Biol 41:763–769

    PubMed  CAS  Google Scholar 

  • Kandror O, Goldberg AL (1997) Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci USA 94:4978–4981

    Article  PubMed  CAS  Google Scholar 

  • Kandror O, Bretschneider N, Kreydin E, Cavalieri D, Goldberg AL (2004) Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Mol Cell 13:771–781

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Ahn IY, Cheonand Hyun J (2009) Molecular cloning and thermal stress-induced expression of a pi-class glutathione S-transferase (GST) in the Antarctic bivalve Laternula elliptica. Comp Biochem Phys A 152:207–213

    Article  Google Scholar 

  • Kim IS, Sohn HY, Jin I (2011) Adaptive stress response to menadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377. J Microbiol 49:816–823

    Article  PubMed  CAS  Google Scholar 

  • King J, Haase-Pettingell C, Robinson AS, Speed M, Mitraki A (1996) Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. FASEB J 10:57–66

    PubMed  CAS  Google Scholar 

  • Kopp M, Muller H, Holzer H (1993) Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J Biol Chem 268:4766–4774

    PubMed  CAS  Google Scholar 

  • LaTerza AL, Miceli C, Luporini P (2001) Divergence between two Antarctic species of the ciliate Euplotes, E. focardii and E. nobilii, in the expression of heat-shock protein 70 genes. Mol Ecol 10:1061–1067

    Article  CAS  Google Scholar 

  • LaTerza AL, Miceli C, Luporini P (2004) The gene for the heat-shock protein 70 of Euplotes focardii, an Antarctic psychrophilic ciliate. Antarct Sci 16:23–28

    Article  Google Scholar 

  • Lee JK, Park KS, Park S, Park H, Song YH, Kang SH, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60:222–228

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat shock proteins. Annu Rev Genet 55:1151–1191

    Google Scholar 

  • Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F et al (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    Article  PubMed  Google Scholar 

  • Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang Z, Moult J, Madupu R, Nelson WC, Dodson RJ et al (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918

    Article  PubMed  Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252

    Article  PubMed  CAS  Google Scholar 

  • Murata Y, Homma T, Kitagawa E, Momose Y, Sato MS, Odani M, Shimizu H, Hasegawa-Mizusawa M, Matsumoto R, Mizukami S et al (2006) Genome-wide expression analysis of yeast response during exposure to 4°C. Extremophiles 10:117–128

    Article  PubMed  CAS  Google Scholar 

  • Ocón A, Hampp R, Requena N (2007) Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytol 174:879–891

    Article  PubMed  Google Scholar 

  • Park H, Ahn IY, Kim HJ, Cheon J, Kim M (2008) Analysis of ESTs and expression of two peroxiredoxins in the thermally stressed Antarctic bivalve Laternula elliptica. Fish Shellfish Immun 25:550–559

    Article  CAS  Google Scholar 

  • Park AK, Park KS, Kim HJ, Park H, Ahn IY, Chi YM, Moon JH (2011) Crystallization and preliminary X-ray crystallographic studies of the ice-binding protein from the Antarctic yeast Leucosporidium sp. AY30. Acta Cryst 67:800–802

    Google Scholar 

  • Piano A, Franzellitti S, Tinti F, Fabbri E (2005) Sequencing and expression pattern of inducible heat shock gene products in the European flat oyster, Ostrea edulis. Gene 361:119–126

    Article  PubMed  CAS  Google Scholar 

  • Piette F, Struvay C, Feller G (2011) The protein folding challenge in psychrophiles: facts and current issues. Environ Microbiol 13:1924–1933

    Article  PubMed  CAS  Google Scholar 

  • Place SP, Hofmann GE (2005) Constitutive expression of a stress-inducible heat shock protein gene, hsp70, in a phylogenetically distant Antarctic fish. Polar Biol 28:261–267

    Article  Google Scholar 

  • Porankiewiz J, Schelin J, Clarke AK (1998) The ATP-dependent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus. Mol Microbiol 29:275–283

    Article  Google Scholar 

  • Rinehart JP, Hayward SA, Elnitsky MA, Sandro LH, Lee RE, Denlinger DL (2006) Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. Proc Natl Acad Sci USA 103:14223–14227

    Article  PubMed  CAS  Google Scholar 

  • Sidell BD, Vayda ME, Small DJ, Moylan TJ, Londraville RL, Yuan ML, Rodnick KJ, Eppley ZA, Costello L (1997) Variable expression of myoglobin among the hemoglobinless Antarctic icefishes. Proc Natl Acad Sci USA 94:3420–3424

    Article  PubMed  CAS  Google Scholar 

  • Somero GN, Fields PA, Hofmann GE, Weinstein RB, Kawall H (1998) Cold adaptation and stenothermy in Antarctic notothenioid fishes: what has been gained and what has been lost? In: DiPrisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer, Italia, pp 97–109

    Chapter  Google Scholar 

  • Toledano MB, Delaunay A, Biteau B, Spector D, Azevedo D (2003) Oxidative stress responses in yeast. In: Hohman S, Mager WH (eds) Yeast stress responses. Springer, Berlin, pp 241–303

    Chapter  Google Scholar 

  • Tosi S, Onofri S, Brusoni M, Zucconi L, Vishniac H (2005) Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation. Polar Biol 28:470–482

    Article  Google Scholar 

  • Turchetti B, Hall SRT, Connell LB, Branda E, Buzzini P, Theelen B, Müller WH, Boekhout T (2011) Psychrophilic yeasts from Antarctica and European glaciers: description of Glaciozyma gen. nov., Glaciozyma martini sp. nov. and Glaciozyma watsonii sp. nov. Extremophiles 15:573–586

    Article  PubMed  CAS  Google Scholar 

  • Turkiewicz M, Pazgier M, Donachie SP, Kalinowska H (2005) Invertase and α-glucosidase production by the endemic Antarctic marine yeast Leucosporidium antarcticum. Pol Polar Res 26:125–136

    Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034–research0034.11

    Google Scholar 

  • Vigh L, Maresca B, Harwood JL (1998) Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem Sci 23:369–374

    Article  PubMed  CAS  Google Scholar 

  • Vishniac HS (2006) Yeast biodiversity in the Antarctic. In: Péter G, Rosa C (eds) Biodiversity and ecophysiology of yeasts. The yeast handbook. Springer, Berlin, pp 419–440

    Chapter  Google Scholar 

  • Vuorio OE, Kalkkinen N, Londesborough J (1993) Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur J Biochem 216:849–861

    Article  PubMed  CAS  Google Scholar 

  • Watson K (1990) Microbial stress proteins. Adv Microb Physiol 31:183–223

    Article  PubMed  CAS  Google Scholar 

  • Zucconi L, Pagano S, Fenice M, Selbmann L, Onofri S (1996) Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol 16:53–61

    Google Scholar 

Download references

Acknowledgments

This work was supported by Malaysian Ministry of Science, Technology and Innovation under the Genomics and Molecular Biology Initiatives of the Malaysian Genome Institute (Project No. 08-05-MGI-GMB001). We would also like to acknowledge the contributions of the Malaysian Antarctic Research Programme (MARP) of the Academy of Sciences Malaysia and the Australian Antarctic Division. We would like to thank Miss Ong Wan Jing for her contribution in the growth studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemente Michael Vui Ling Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boo, S.Y., Wong, C.M.V.L., Rodrigues, K.F. et al. Thermal stress responses in Antarctic yeast, Glaciozyma antarctica PI12, characterized by real-time quantitative PCR. Polar Biol 36, 381–389 (2013). https://doi.org/10.1007/s00300-012-1268-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-012-1268-2

Keywords

Navigation