Skip to main content

Advertisement

Log in

Role of the Siderophore Transporter SirABC in the Staphylococcus aureus Resistance to Oxidative Stress

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In Staphylococcus aureus, the intracellular siderophore staphyloferrin B, which has been shown to chelate iron-bound to serum transferrin, is transported into cells by the SirABC system. In this work, we have analysed the role of the Sir transporter under stress conditions that resemble those imposed by the mammalian innate immune system. We show that exposure of S. aureus to oxidative and nitrosative stress generated by hydrogen peroxide and S-nitrosoglutathione, respectively, induced the expression of the sirA gene. The disruption of the sir operon led to a strain with lower viability and decreased resistance to oxidative stress. S. aureus sir null mutant was also analysed during infection of murine macrophages and shown to contribute to S. aureus survival inside macrophages. Altogether, our results indicate that the Sir transport system confers protection against reactive oxygen species, therefore, contributing to the virulence of S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adler C, Corbalan NS, Seyedsayamdost MR, Pomares MF, de Cristobal RE, Clardy J, Kolter R, Vincent PA (2012) Catecholate siderophores protect bacteria from pyochelin toxicity. PLoS One 7(10):e46754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ausubel FM (1999) Current protocols in molecular biology. Wiley & Sons, New York

    Google Scholar 

  3. Beasley FC, Marolda CL, Cheung J, Buac S, Heinrichs DE (2011) Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by staphyloferrin A, staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence. Infect Immun 79(6):2345–2355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Chang W, Small DA, Toghrol F, Bentley WE (2006) Global transcriptome analysis of Staphylococcus aureus response to hydrogen peroxide. J Bacteriol 188(4):1648–1659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Cheung J, Beasley FC, Liu S, Lajoie GA, Heinrichs DE (2009) Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus. Mol Microbiol 74(3):594–608

    Article  CAS  PubMed  Google Scholar 

  6. Cotton JL, Tao J, Balibar CJ (2009) Identification and characterization of the Staphylococcus aureus gene cluster coding for staphyloferrin A. Biochemistry 48(5):1025–1035

    Article  CAS  PubMed  Google Scholar 

  7. Dale SE, Sebulsky MT, Heinrichs DE (2004) Involvement of SirABC in iron–siderophore import in Staphylococcus aureus. J Bacteriol 186(24):8356–8362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. de Lencastre H, Tomasz A (1994) Reassessment of the number of auxiliary genes essential for expression of high-level methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 38(11):2590–2598

    Article  PubMed Central  PubMed  Google Scholar 

  9. Drechsel H, Freund S, Nicholson G, Haag H, Jung O, Zahner H, Jung G (1993) Purification and chemical characterization of staphyloferrin B, a hydrophilic siderophore from staphylococci. Biometals 6(3):185–192

    Article  CAS  PubMed  Google Scholar 

  10. Friedman DB, Stauff DL, Pishchany G, Whitwell CW, Torres VJ, Skaar EP (2006) Staphylococcus aureus redirects central metabolism to increase iron availability. PLoS Pathog 2(8):e87

    Article  PubMed Central  PubMed  Google Scholar 

  11. Goncalves VL, Nobre LS, Vicente JB, Teixeira M, Saraiva LM (2006) Flavohemoglobin requires microaerophilic conditions for nitrosative protection of Staphylococcus aureus. FEBS Lett 580(7):1817–1821

    Article  CAS  PubMed  Google Scholar 

  12. Grigg JC, Cheung J, Heinrichs DE, Murphy ME (2010) Specificity of Staphyloferrin B recognition by the SirA receptor from Staphylococcus aureus. J Biol Chem 285(45):34579–34588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Grigg JC, Cooper JD, Cheung J, Heinrichs DE, Murphy ME (2010) The Staphylococcus aureus siderophore receptor HtsA undergoes localized conformational changes to enclose staphyloferrin A in an arginine-rich binding pocket. J Biol Chem 285(15):11162–11171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Heinrichs JH, Gatlin LE, Kunsch C, Choi GH, Hanson MS (1999) Identification and characterization of SirA, an iron-regulated protein from Staphylococcus aureus. J Bacteriol 181(5):1436–1443

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Livak KJST (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):401–408

    Article  Google Scholar 

  16. Meiwes J, Fiedler HP, Haag H, Zahner H, Konetschny-Rapp S, Jung G (1990) Isolation and characterization of staphyloferrin A, a compound with siderophore activity from Staphylococcus hyicus DSM 20459. FEMS Microbiol Lett 55(1–2):201–205

    Article  CAS  PubMed  Google Scholar 

  17. Nobre LS, Saraiva LM (2013) Effect of combined oxidative and nitrosative stresses on Staphylococcus aureus transcriptome. Appl Microbiol Biotechnol 97(6):2563–2573

    Article  CAS  PubMed  Google Scholar 

  18. Richardson AR, Dunman PM, Fang FC (2006) The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol 61(4):927–939

    Article  CAS  PubMed  Google Scholar 

  19. Ross RA, Onderdonk AB (2000) Production of toxic shock syndrome toxin 1 by Staphylococcus aureus requires both oxygen and carbon dioxide. Infect Immun 68(9):5205–5209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Vliegen I, Jacobs JA, Beuken E, Bruggeman CA, Vink C (2006) Rapid identification of bacteria by real-time amplification and sequencing of the 16S rRNA gene. J Microbiol Methods 66(1):156–164

    Article  CAS  PubMed  Google Scholar 

  21. Yarwood JM, McCormick JK, Schlievert PM (2001) Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus. J Bacteriol 183(4):1113–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The work was funded by Fundação para a Ciência e Tecnologia Project Grants PEst-OE/EQB/LA0004/2011, PTDC/BBB-BQB/0937/2012 and the fellowship SRFH/BPD/69325/2010 (LN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lígia S. Nobre.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nobre, L.S., Saraiva, L.M. Role of the Siderophore Transporter SirABC in the Staphylococcus aureus Resistance to Oxidative Stress. Curr Microbiol 69, 164–168 (2014). https://doi.org/10.1007/s00284-014-0567-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0567-y

Keywords

Navigation