Skip to main content
Log in

Social networks in changing environments

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Social network analysis (SNA) has become a widespread tool for the study of animal social organisation. However despite this broad applicability, SNA is currently limited by both an overly strong focus on pattern analysis as well as a lack of dynamic interaction models. Here, we use a dynamic modelling approach that can capture the responses of social networks to changing environments. Using the guppy, Poecilia reticulata, we identified the general properties of the social dynamics underlying fish social networks and found that they are highly robust to differences in population density and habitat changes. Movement simulations showed that this robustness could buffer changes in transmission processes over a surprisingly large density range. These simulation results suggest that the ability of social systems to self-stabilise could have important implications for the spread of infectious diseases and information. In contrast to habitat manipulations, social manipulations (e.g. change of sex ratios) produced strong, but short-lived, changes in network dynamics. Lastly, we discuss how the evolution of the observed social dynamics might be linked to predator attack strategies. We argue that guppy social networks are an emergent property of social dynamics resulting from predator–prey co-evolution. Our study highlights the need to develop dynamic models of social networks in connection with an evolutionary framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ballerini M, Cabibbo N, Candelier R et al (2008) Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Anim Behav 76:201–215

    Article  Google Scholar 

  • Bednekoff PA, Lima SL (2002) Why are scanning patterns so variable? An overlooked question in the study of anti-predator vigilance. J Avian Biol 33:143–149

    Article  Google Scholar 

  • Blonder B, Wey TW, Dornhaus A, James R, Sih A (2012) Temporal dynamics and network analysis. Method Ecol Evol 3:958–972

    Article  Google Scholar 

  • Borner KK, Krause S, Mehner T, Uusi-Heikkilä S, Ramnarine IW, Krause J (2015). Turbidity affects social dynamics in Trinidadian guppies. Behav Ecol Sociobiol (published online, doi:10.1007/s00265-015-1875-3).

  • Brierley AS (2014) Diel vertical migration. Curr Biol 24:R1074–R1076

    Article  CAS  PubMed  Google Scholar 

  • Butts CT (2008) A relational event framework for social action. Sociol Methodol 38:155–200

    Google Scholar 

  • Couzin ID (2006) Behavioral ecology: social organization in fission-fusion societies. Curr Biol 16:R169–R171

    Article  CAS  PubMed  Google Scholar 

  • Croft DP, James R, Krause J (2008) Exploring animal social networks. Princeton University Press, Princeton

    Book  Google Scholar 

  • Croft DP, Krause J, Darden SK, Ramnarine IW, Faria JJ, James R (2009) Behavioural trait assortment in a social network: patterns and implications. Behav Ecol Sociobiol 63:1495–1503

    Article  Google Scholar 

  • Darden SK, Croft DP (2008) Male harassment drives females to alter habitat use and leads to segregation of the sexes. Biol Lett 4:449–451

    Article  PubMed Central  PubMed  Google Scholar 

  • Darden SK, James R, Ramnarine IW, Croft DP (2009) Social implications of the battle of the sexes: sexual harassment disrupts female sociality and social recognition. Proc R Soc Lond B 276:2651–2656

    Article  Google Scholar 

  • Drewe JA, Perkins SE (2014) Disease transmission in animal social networks. In: Krause J, James R, Franks DW, Croft DP (eds) Animal social networks. Oxford University Press, pp 95–110

  • Fiorino DF, Coury A, Philipps AG (1997) Dynamic changes in nucleus accumbens dopamine efflux during the Coolidge effect in male rats. J Neurosci 17:4849–4855

    CAS  PubMed  Google Scholar 

  • Flack JC, Girvan M, de Waal FBM, Krakauer DC (2006) Policing stabilizes construction of social niches in primates. Nature 439:426–429

    Article  CAS  PubMed  Google Scholar 

  • Griffiths SW, Magurran AE (1997) Schooling preferences for familiar fish vary with group size in a wild guppy population. Proc R Soc Lond B 264:547–551

    Article  Google Scholar 

  • Hensor E, Couzin ID, James R, Krause J (2005) Modelling density-dependent fish shoal distributions in the laboratory and field. Oikos 110:344–352

    Article  Google Scholar 

  • Henzi SP, Lusseau D, Weingrill T, van Schaik CP, Barrett L (2009) Cyclicity in the structure of female baboon social networks. Behav Ecol Sociobiol 63:1015–1021

    Article  Google Scholar 

  • Huang ZY, Plettner E, Robinson GE (1998) Effects of social environment and worker mandibular glands on endocrine-mediated behavioral development in honey bees. J Comp Physiol A 183:143–152

    Article  CAS  PubMed  Google Scholar 

  • Jacoby DMP, Busawon DS, Sims DW (2010) Sex and social networking: the influence of male presence on social structure of female shark groups. Behav Ecol 21:808–818

    Article  Google Scholar 

  • Kelley JL, Graves JA, Magurran AE (1999) Familiarity breeds contempt in guppies. Nature 401:661–662

    Article  CAS  PubMed  Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford

    Google Scholar 

  • Krause J, Lusseau D, James R (2009) Animal social networks: an introduction. Behav Ecol Sociobiol 63:967–973

    Article  Google Scholar 

  • Krause J, James R, Franks DW, Croft DP (eds) (2014) Animal social networks. Oxford University Press, Oxford

    Google Scholar 

  • Kurvers RHJM, Krause J, Croft DP, Wilson ADM, Wolf M (2014) Ecological and evolutionary consequences of social networks: emerging topics. Trends Ecol Evol 29:326–335

    Article  PubMed  Google Scholar 

  • Magurran AE (2005) Evolutionary ecology: the Trinidadian guppy. Oxford University Press, Oxford

    Book  Google Scholar 

  • Makris NC, Ratilal P, Jagannathan S, Gong Z, Andrews M, Bertsatos I, Godo OR, Nero RW, Jech JM (2009) Critical population density triggers rapid formation of vast oceanic fish shoals. Science 323:1734–1737

    Article  CAS  PubMed  Google Scholar 

  • Martin P, Bateson P (2007) Measuring behaviour: an introductory guide. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. Siam Rev 45:167–256

    Article  Google Scholar 

  • Nightingale G, Boogert NJ, Laland KN, Hoppitt W (2014) Quantifying diffusion in social networks: a Bayesian approach. In: Krause J, James R, Franks DW, Croft DP (eds) Animal social networks. Oxford University Press, Oxford, pp 38–52

    Chapter  Google Scholar 

  • Pinter-Wollman N, Hobson EA, Smith JE et al (2013) The dynamics of animal social networks: analytical, conceptual, and theoretical advances. Behav Ecol 25:242–255

    Article  Google Scholar 

  • Rangeley RW, Kramer DL (1998) Density-dependent antipredator tactics and habitat selection in juvenile pollock. Ecology 79:943–952

    Article  Google Scholar 

  • Scannell J, Roberts G, Lazarus J (2001) Prey scan at random to evade observant predators. Proc R Soc Lond B 268:541–547

    Article  CAS  Google Scholar 

  • Schulz DJ, Huang ZY, Robinson GE (1998) Effects of colony food shortage on behavioral development in honey bees. Behav Ecol Sociobiol 42:95–303

    Article  Google Scholar 

  • Strier KB, Mendes SL (2012) The Northern muriqui (Brachyteles hypoxanthus): Lessons on behavioral plasticity and population dynamics from a critically endangered species. In: Kappeler PM, Watts DP (eds) Long-term field studies of primates. Springer-Verlag, Berlin, pp 125–140

    Chapter  Google Scholar 

  • Tranmer M, Marcum CS, Morton FB, Croft DP, de Kort SR (2015) Using the relational event model (REM) to inesvitgate the temporal dynamics of animal social networks. Anim Behav 101:99–105

    Article  PubMed  Google Scholar 

  • Wey TW, Burger JR, Ebensperger LA, Hayes LD (2013) Reproductive correlates of social network variation in plural breeding degus (Octodon degus). Anim Behav 85:1407–1414

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson ADM, Krause S, James R, Croft DP, Ramnarine IW, Borner KK, Clement RJG, Krause J (2014) Dynamic social networks in guppies (Poecilia reticulata). Behav Ecol Sociobiol 68:915–925

    Article  Google Scholar 

  • Wilson ADM, Brownscombe JW, Krause J, Krause S, Gutowsky LFG, Brooks EJ, Cooke SJ (2015) Integrating network analysis, sensor tags and observation to understand shark ecology and behaviour. Behav Ecol. doi:10.1093/beheco/arv115

  • Wittemyer G, Douglas-Hamilton I, Getz WM (2005) The socioecology of elephants: analysis of the processes creating multitiered social structures. Anim Behav 69:1357–1371

    Article  Google Scholar 

Download references

Acknowledgments

We thank Meint-Hilmar Broers and Jan Trebesch for help in the field. This study received funding from the Alexander von Humboldt Foundation (ADMW) and the BehaviourType project granted by the Gottfried-Wilhelm-Leibniz Association’s Pact for Innovation and Research (JK). We would also like to thank Associate Editor Jan Lindström and two anonymous reviewers for their valuable input.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This research was performed in accordance with the laws, guidelines, and ethical standards of the country in which they were performed (Trinidad).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. M. Wilson.

Additional information

Communicated by J. Lindström

A. D. M. Wilson and S. Krause contributed equally

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, A.D.M., Krause, S., Ramnarine, I.W. et al. Social networks in changing environments. Behav Ecol Sociobiol 69, 1617–1629 (2015). https://doi.org/10.1007/s00265-015-1973-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-015-1973-2

Keywords

Navigation