Skip to main content
Log in

Dynamic social networks in guppies (Poecilia reticulata)

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

One of the main challenges in the study of social networks in vertebrates is to close the gap between group patterns and dynamics. Usually scan samples or transect data are recorded to provide information about social patterns of animals, but these techniques themselves do not shed much light on the underlying dynamics of such groups. Here we show an approach which captures the fission-fusion dynamics of a fish population in the wild and demonstrates how the gap between pattern and dynamics may be closed. Our analysis revealed that guppies have complex association patterns that are characterised by close strong connections between individuals of similar behavioural type. Intriguingly, the preference for particular social partners is not expressed in the length of associations but in their frequency. Finally, we show that the observed association preferences could have important consequences for transmission processes in animal social networks, thus moving the emphasis of network research from descriptive mechanistic studies to functional and predictive ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blonder B, Wey TW, Dornhaus A, James R, Sih A (2012) Temporal dynamics and network analysis. Methods Ecol Evol 3:958–972

    Article  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: structure and dynamics. Phys Rep 424:175–308

    Article  Google Scholar 

  • Cane V (1978) On fitting low-order Markov chains to behaviour sequences. Anim Behav 26:332–338

    Google Scholar 

  • Croft DP, Arrowsmith BJ, Bielby J, Skinner K, White E, Couzin ID, Magurran AE, Ramnarine I, Krause J (2003) Mechanisms underlying shoal composition in the Trinidadian guppy, Poecilia reticulata. Oikos 100:429–438

    Article  Google Scholar 

  • Croft DP, Krause J, James R (2004) Social networks in the guppy (Poecilia reticulata). Proc R Soc Lond B 271:S516–S519

    Article  Google Scholar 

  • Croft DP, James R, Thomas POR, Hathaway C, Mawdsley D, Laland KN, Krause J (2006) Social structure and co-operative interactions in a wild population of guppies (Poecilia reticulata). Behav Ecol Sociobiol 59:644–650

    Article  Google Scholar 

  • Croft DP, James R, Krause J (2008) Exploring animal social networks. Princeton University Press, Princeton

    Google Scholar 

  • Croft DP, Krause J, Darden SK, Ramnarine IW, Faria JJ, James R (2009) Behavioural trait assortment in a social network: patterns and implications. Behav Ecol Sociobiol 63:1495–1503

    Article  Google Scholar 

  • Croft DP, Edenbrow M, Darden SK, Ramnarine IW, Oosterhout C, Cable J (2011a) Effect of gyrodactylid ectoparasites on host behaviour and social network structure in guppies Poecilia reticulata. Behav Ecol Sociobiol 65:2219–2227

    Article  Google Scholar 

  • Croft DP, Madden JR, Franks DW, James R (2011b) Hypothesis testing in animal social networks. Trends Ecol Evol 26:502–507

    Article  PubMed  Google Scholar 

  • Cross PC, Creech TG, Ebinger MR, Heisey DM, Irvine KM, Creel S (2012) Wildlife contact analysis: emerging methods, questions, and challenges. Behav Ecol Sociobiol 66:1437–1447

    Article  Google Scholar 

  • Eagle N, Pentland A, Lazer D (2009) Inferring friendship network structure by using mobile phone data. Proc Natl Acad Sci U S A 106:15274–15278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flack JC, Girvan M, de Waal FBM, Krakauer DC (2006) Policing stabilizes construction of social niches in primates. Nature 439:426–429

    Article  CAS  PubMed  Google Scholar 

  • Franks DW, James R, Noble J, Ruxton GD (2009) A foundation for developing a methodology for social network sampling. Behav Ecol Sociobiol 63:1079–1088

    Article  Google Scholar 

  • Godfrey SS, Bull C, James R, Murray K (2009) Network structure and parasite transmission in a group living lizard, the gidgee skink, Egernia stokesii. Behav Ecol Sociobiol 63:1045–1056

    Article  Google Scholar 

  • Guttridge TL, Gruber SH, DiBattista JD, Feldheim KA, Croft DP, Krause S, Krause J (2011) Assortative interactions and leadership in a free-ranging population of juvenile lemon shark Negaprion brevirostris. Mar Ecol Prog Ser 423:235–245

    Article  Google Scholar 

  • Harcourt JL, Sweetman G, Manica A, Johstone RA (2010) Pairs of fish resolve conflicts over coordinated movement by taking turns. Curr Biol 20:156–160

    Google Scholar 

  • Henzi SP, Lusseau D, Weingrill T, Schaik CP, Barrett L (2009a) Cyclicity in the structure of female baboon social networks. Behav Ecol Sociobiol 63:1015–1021

    Article  Google Scholar 

  • Henzi SP, Lusseau D, Weingrill T, van Schaik CP, Barrett L (2009b) Cyclicity in the structure of female baboon social networks. Behav Ecol Sociobiol 63:1015–1021

    Article  Google Scholar 

  • Herbert-Read JE, Krause S, Morrell LJ, Schaerf TM, Krause J, Ward AJW (2013) The role of individuality in collective group movement. Proc R Soc B 280:2012–2564

    Google Scholar 

  • Kerth GG, Perony NN, Schweitzer FF (2011) Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc R Soc Lond B 278:2761–2767

    Article  Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford

    Google Scholar 

  • Krause J, Croft DP, James R (2007) Social network theory in the behavioural sciences: potential applications. Behav Ecol Sociobiol 62:15–27

    Article  Google Scholar 

  • Krause J, Lusseau D, James R (2009) Animal social networks: an introduction. Behav Ecol Sociobiol 63:967–973

    Article  Google Scholar 

  • Lea AJ, Blumstein DT, Wey TW, Martin JGA (2010) Heritable victimization and the benefits of agonistic relationships. Proc Natl Acad Sci U S A 107:21587–21592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee PC (1999) Comparative primate socioecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lusseau D (2003) The emergent properties of a dolphin social network. Proc R Soc Lond B 270:S186–S188

    Article  Google Scholar 

  • Madden JR, Drewe JA, Pearce GP, Clutton-Brock TH (2009) The social network structure of a wild meerkat population: 2. Intragroup interactions. Behav Ecol Sociobiol 64:81–95

    Article  Google Scholar 

  • Magurran AE (2005) Evolutionary biology: The Trinidadian guppy. Oxford University Press, Oxford

    Google Scholar 

  • Manly BFJ (1995) A note on the analysis of species co-occurrences. Ecology 76:1109–1115

    Article  Google Scholar 

  • Marschall N (2007) Methodological pitfalls in social network analysis: Why current methods produce questionable results. VDM, Saarbrücken

    Google Scholar 

  • McDonald DB (2007) Predicting fate from early connectivity in a social network. Proc Natl Acad Sci U S A 104:10910–10914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Metz HAJ, Dienske H, de Jonge G, Putters FA (1983) Continuous-time Markov chains as models for animal behaviour. Bull Math Biol 45:643–658

    Google Scholar 

  • Naug D (2008) Structure of the social network and its influence on transmission dynamics in a honeybee colony. Behav Ecol Sociobiol 62:1719–1725

    Article  Google Scholar 

  • Oh KP, Badyaev AV (2010) Structure of social networks in a passerine bird: consequences for sexual selection and the evolution of mating strategies. Am Nat 176:E80–E89

    Article  PubMed  Google Scholar 

  • Perreault C (2010) A note on reconstructing animal social networks from independent small-group observations. Anim Behav 80:551–562

    Article  Google Scholar 

  • Pike TW, Samanta M, Lindstroem J, Royle NJ (2008) Behavioural phenotype affects social interactions in an animal network. Proc R Soc Lond B 275:2515–2520

    Article  Google Scholar 

  • Pinter-Wollman N, Hobson EA, Smith JE, Edelman AJ, Shizuka D et al (2013) The dynamics of animal social networks: analytical, conceptual, and theoretical advances. Behav Ecol. doi:10.1093/beheco/art047

    Google Scholar 

  • Ramos-Fernandez G, Boyer D, Aureli F, Vick LG (2009) Association networks in spider monkeys (Ateles geoffroyi). Behav Ecol Sociobiol 63:999–1013

    Article  Google Scholar 

  • Riesch R, Plath M, Schlupp I (2011) Toxic hydrogen sulphide and dark caves: pronounced male life-history divergence among locally adapted Poecilia mexicana (Poeciliidae). J Evol Biol 24:596–606

    Article  CAS  PubMed  Google Scholar 

  • Santos FC, Pacheco JM, Lenaerts T (2006) Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc Natl Acad Sci U S A 103:3490–3494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sendova-Franks AB, Hayward RK, Wulf B, Klimek T, James R et al (2010) Emergency networking: famine relief in ant colonies. Anim Behav 79:473–485

    Article  Google Scholar 

  • Sih A, Hanser SF, McHugh KA (2009) Social network theory: new insights and issues for behavioral ecologists. Behav Ecol Sociobiol 63:975–988

    Article  Google Scholar 

  • Snijders TAB, van de Bunt GG, Steglich CEG (2010) Introduction to stochastic actor-based models for network dynamics. Soc Networks 32:44–60

    Article  Google Scholar 

  • Sundaresan SR, Fischhoff IR, Dushoff J, Rubenstein DI (2007) Network metrics reveal differences in social organization between two fission-fusion species, Grevy’s zebra and onager. Oecologia 151:140–149

    Article  PubMed  Google Scholar 

  • Sundaresan, Fischhoff IR, Dushoff J (2009) Avoiding spurious findings of nonrandom social structure in association data. Anim Behav 77:1381–1385

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Wey T, Blumstein DT, Shen W, Jordan F (2008) Social network analysis of animal behaviour: a promising tool for the study of sociality. Anim Behav 75:333–344

    Article  Google Scholar 

  • Williams R, Lusseau D (2006) A killer whale social network is vulnerable to targeted removals. Biol Lett 2:497–500

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolf JBW, Mawdsley D, Trillmich F, James R (2007) Social structure in a colonial mammal: unravelling hidden structural layers and their foundations by network analysis. Anim Behav 74:1293–1302

    Article  Google Scholar 

Download references

Acknowledgments

ADM Wilson acknowledges financial support from research fellowships from the Alexander von Humboldt foundation and IGB. RC was supported by an IGB studentship, KB by a Nafög studentship and DPC by funding from the Leverhulme Trust. We would like to thank Kharan Deonarinesingh for assistance in the field.

Ethical standards

This research was performed in accordance with the laws, guidelines and ethical standards of the country in which they were performed (Trinidad).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. M. Wilson.

Additional information

Communicated by J. Lindström

ADM Wilson and S Krause are shared first authors

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

Fig. S1

Frequency distributions of (a) the lengths of contact with a particular nearest neighbour, (b) the lengths of social contact, and (c) the lengths of being alone in the observed data (grey diamonds) and in a simulation of the very simple model that uses unconditional probabilities p(i) and p(x) of being social and of being alone, respectively (black circles) (DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, A.D.M., Krause, S., James, R. et al. Dynamic social networks in guppies (Poecilia reticulata). Behav Ecol Sociobiol 68, 915–925 (2014). https://doi.org/10.1007/s00265-014-1704-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-014-1704-0

Keywords

Navigation