Skip to main content
Log in

In vitro and in vivo evaluation of the influence of type III NaPi co-transporter activity during apoptosis on 99mTc-(V)DMSA uptake in the human leukaemic cell line U937

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Pentavalent 99mTc-dimercaptosuccinic acid [99mTc-(V)DMSA or (V)DMSA] is a marker of phosphate transport, entering cells specifically through type III NaPi co-transporters. Phosphate ion is known to be involved in cell metabolism, including the apoptotic cell death process. As phosphate accumulation decreases during apoptosis, we investigated the influence of type III NaPi co-transporter activity on (V)DMSA uptake during this type of cell death.

Methods

Uptake of (V)DMSA and phosphate was compared in a leukaemic cell line (U937) in vitro model after induction of apoptosis by a chemotherapeutic agent, etoposide (VP16). (V)DMSA biodistribution in nude mice during apoptosis was also investigated in a U937 xenograft in vivo model. The percentage of apoptosis in vitro and ex vivo was determined with annexin V fluorescein by flow cytometry.

Results

The in vitro results showed that, in parallel with the decrease in phosphate uptake during apoptosis, (V)DMSA accumulation is negatively correlated with the percentage of apoptosis. Biodistribution studies showed decreased accumulation of (V)DMSA in tumours after treatment with VP16. Animal studies also confirmed an inverse correlation between percentage of apoptosis in tumours and (V)DMSA uptake.

Conclusion

The activity of type III NaPi co-transporter is inhibited during the early stages of apoptosis, leading to differential incorporation of (V)DMSA in viable cells and apoptotic cells both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a, b
Fig. 5

Similar content being viewed by others

References

  1. Adalet I, Kocak M, Oguz H, Alagol F, Cantez S. Determination of medullary thyroid carcinoma metastases by 201Tl, 99Tcm(V)DMSA, 99Tcm-MIBI and 99Tcm-tetrofosmin. Nucl Med Commun 1999;20:353–9

    CAS  PubMed  Google Scholar 

  2. Ohta H, Endo K, Fujita T, Konishi J, Torizuka K, Horiuchi K, Yokoyama A. Clinical evaluation of tumour imaging using 99Tc(V)m dimercaptosuccinic acid, a new tumour-seeking agent. Nucl Med Commun 1988;9:105–116

    CAS  PubMed  Google Scholar 

  3. Papantoniou V, Christodoulidou J, Papadaki E, Valotassiou V, Souvatzoglou M, Louvrou A, Feida H, Sotiropoulou M, Pampouras G, Michalas S, Zerva C. Uptake and washout of 99mTcV-dimercaptosuccinic acid and 99mTc-sestamibi in the assessment of histological type and grade in breast cancer. Nucl Med Commun 2002;23:461–67

    Article  PubMed  Google Scholar 

  4. Hirano T, Otake H, Kazama K, Wakabayashi K, Zama A, Shibasaki T, Tamura M, Endo K. Technetium-99m(V)-DMSA and thallium-201 in brain tumor imaging: correlation with histology and malignant grade. J Nucl Med 1997;38:1741–49

    CAS  PubMed  Google Scholar 

  5. Atasever T, Gundogdu C, Vural G, Kapucu LO, Karalezli A, Unlu M. Evaluation of pentavalent Tc-99m DMSA scintigraphy in small cell and nonsmall cell lung cancers. Nuklearmedizin 1997;36:223–7

    CAS  PubMed  Google Scholar 

  6. Denoyer D, Perek N, Le Jeune N, Frere D, Dubois F. Evidence that 99mTc-(V)-DMSA uptake is mediated by NaPi cotransporter type III in tumour cell lines. Eur J Nucl Med Mol Imaging 2004;31:77–84

    Article  CAS  PubMed  Google Scholar 

  7. Ghishan FK, Rebeiz R, Honda T, Nakagawa N. Characterization and expression of a novel Na(+)-inorganic phosphate transporter at the liver plasma membrane of the rat. Gastroenterology 1993;105:519–26

    PubMed  Google Scholar 

  8. Li H, Xie Z. Molecular cloning of two rat Na+/Pi cotransporters: evidence for differential tissue expression of transcripts. Cell Mol Biol Res 1995;41:451–60

    PubMed  Google Scholar 

  9. Biber J, Custer M, Magagnin S, Hayes G, Werner A, Lotscher M, Kaissling B, Murer H. Renal Na/Pi-cotransporters. Kidney Int 1996;49:981–5

    PubMed  Google Scholar 

  10. Hisano S, Haga H, Li Z, Tatsumi S, Miyamoto KI, Takeda E, Fukui Y. Immunohistochemical and RT-PCR detection of Na+-dependent inorganic phosphate cotransporter (NaPi-2) in rat brain. Brain Res 1997;772:149–55

    CAS  PubMed  Google Scholar 

  11. Gupta A, Miyauchi A, Fujimori A, Hruska KA. Phosphate transport in osteoclasts: a functional and immunochemical characterization. Kidney Int 1996;49:968–74

    PubMed  Google Scholar 

  12. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci U S A 1998;95:14564–9

    Article  PubMed  Google Scholar 

  13. Kavanaugh MP, Kabat D. Identification and characterization of a widely expressed phosphate transporter/retrovirus receptor family. Kidney Int 1996;49:959–63

    CAS  PubMed  Google Scholar 

  14. Uckert W, Willimsky G, Pedersen FS, Blankenstein T, Pedersen L. RNA levels of human retrovirus receptors Pit1 and Pit2 do not correlate with infectibility by three retroviral vector pseudotypes. Hum Gene Ther 1998;9:2619–27

    Article  PubMed  Google Scholar 

  15. Werner A, Dehmelt L, Nalbant P. Na+-dependent phosphate cotransporters: the NaPi protein families. J Exp Biol 1998;201:3135–42

    CAS  PubMed  Google Scholar 

  16. Davis PK, Johnson GV. Energy metabolism and protein phosphorylation during apoptosis: a phosphorylation study of tau and high-molecular-weight tau in differentiated PC12 cells. Biochem J 1999;340:51–8

    Article  CAS  PubMed  Google Scholar 

  17. Wotawa A, Solier S, Logette E, Solary E, Corcos L. Differential influence of etoposide on two caspase-2 mRNA isoforms in leukemic cells. Cancer Lett 2002; 185:181–9

    Article  CAS  PubMed  Google Scholar 

  18. Fernandes I, Beliveau R, Friedlander G, Silve C. NaPO(4) cotransport type III (PiT1) expression in human embryonic kidney cells and regulation by PTH. Am J Physiol 1999;277:F543–51

    PubMed  Google Scholar 

  19. Shen MR, Wilkins RJ, Chou CY, Ellory JC. Anion exchanger isoform 2 operates in parallel with Na(+)/H(+) exchanger isoform 1 during regulatory volume decrease of human cervical cancer cells. FEBS Lett 2002;512:52–8

    Article  PubMed  Google Scholar 

  20. Seifert S, Syhre R, Spies H, Johannsen B. Novel tumortropic ester derivatives of 99mTc(V) mesodimercapto succinic acid with low affinity for bone tissue. Nucl Med Commun 2003;24:1175–83

    Article  CAS  PubMed  Google Scholar 

  21. Filomenko R, Poirson-Bichat F, Billerey C, Belon JP, Garrido C, Solary E, Bettaieb A. Atypical protein kinase C zeta as a target for chemosensitization of tumor cells. Cancer Res 2002;62:1815–21

    CAS  PubMed  Google Scholar 

  22. Horiuchi K, Saji H, Yokoyama A. Tc(V)-DMS tumor localization mechanism: a pH-sensitive Tc(V)-DMS-enhanced target/nontarget ratio by glucose-mediated acidosis. Nucl Med Biol 1998;25:549–55

    Article  PubMed  Google Scholar 

  23. Lam ASK, Puncher MR, Blower PJ. In vitro and in vivo studies with pentavalent technetium-99m dimercaptosuccinic acid. Eur J Nucl Med 1996;23:1575–82

    PubMed  Google Scholar 

  24. Watkinson JC, Allen SJ, Laws DE, Lazarus CR, Maisey MN, Clarke SE. The pharmacokinetics and biodistribution of technetium-99m(V)dimercaptosuccinic acid in an animal tumor model. J Nucl Med 1991;32:1235–38

    CAS  PubMed  Google Scholar 

  25. Blower PJ, Singh J, Clarke SE. The chemical identity of pentavalent technetium-99m-dimercaptosuccinic acid. J Nucl Med 1991;32:845–9

    PubMed  Google Scholar 

  26. Ho AD, Lipp T, Ehninger G, Illiger HJ, Meyer P, Freund M, Hunstein W. Combination of mitoxantrone and etoposide in refractory acute myelogenous leukemia—an active and well-tolerated regimen. J Clin Oncol 1988;6:213–7

    CAS  PubMed  Google Scholar 

  27. Athanasoulis T, Koutsikos J, Moulopoulos LA, Tsiouris S, Dimopoulos MA, Zerva C. Reverse of the differential uptake intensity of Tc-99m MIBI and Tc-99m V-DMSA by multiple myeloma lesions in response to therapy. Clin Nucl Med 2003;28:631–5

    Article  CAS  PubMed  Google Scholar 

  28. Blankenberg FG, Naumovski L, Tait JF, Post AM, Strauss HW. Imaging cyclophosphamide-induced intramedullary apoptosis in rats using 99mTc -radiolabeled annexin V. J Nucl Med 2001;42:309–16

    CAS  PubMed  Google Scholar 

  29. McGill G, Fisher DE. Apoptosis in tumorigenesis and cancer therapy. Front Biosci 1997;2:353–79

    Google Scholar 

  30. Flotats A, Carrio I. Non-invasive in vivo imaging of myocardial apoptosis and necrosis. Eur J Nucl Med Mol Imaging 2003;30:615–30

    PubMed  Google Scholar 

  31. Mochizuki T, Kuge Y, Zhao S, Tsukamoto E, Hosokawa M, Strauss HW, Blankenberg FG, Tait JF, Tamaki N. Detection of apoptotic tumor response in vivo after a single dose of chemotherapy with 99mTc-annexin V. J Nucl Med 2003;44:92–7

    CAS  PubMed  Google Scholar 

  32. Blankenberg FG, Tait J, Ohtsuki K, Strauss HW. Apoptosis: the importance of nuclear medicine. Nucl Med Commun 2000;21:241–50

    Article  CAS  PubMed  Google Scholar 

  33. Romer W, Hanauske AR, Ziegler S, Thodtmann R, Weber W, Fuchs C, Enne W, Herz M, Nerl C, Garbrecht M, Schwaiger M. Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 1998;91:4464–71

    CAS  PubMed  Google Scholar 

  34. Stroobants S, Goeminne J, Seegers M, Dimitrijevic S, Dupont P, Nuyts J, Martens M, van den Borne B, Cole P, Sciot R, Dumez H, Silberman S, Mortelmans L, van Oosterom A. 18FDG-positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer 2003;39:2012–20

    Article  CAS  PubMed  Google Scholar 

  35. Simo M, Lomena F, Setoain J, Perez G, Castellucci P, Costansa JM, Setoain-Quinquer J, Domenech-Torne F, Carrió I. FDG-PET improves the management of patients with suspected recurrence of colorectal cancer. Nucl Med Commun 2002;23:975–82

    Article  CAS  PubMed  Google Scholar 

  36. Pace L, Catalano L, Del Vecchio S, Di Gennaro F, De Renzo A, Sica G, Califano C, Tedesco N, Borrelli G, Rotoli B, Salvatore M. Predictive value of technetium-99m sestamibi in patients with multiple myeloma and potential role in the follow-up. Eur J Nucl Med 2001;28:304–12

    Article  CAS  PubMed  Google Scholar 

  37. Moustafa H, Riad R, Omar W, Zaher A, Ebied E. 99mTc-MIBI in the assessment of response to chemotherapy and detection of recurrences in bone and soft tissue tumours of the extremities. Q J Nucl Med 2003;47:51–7

    CAS  PubMed  Google Scholar 

  38. Piwnica-Worms D, Rao VV, Kronauge JF, Croop JM. Characterization of multidrug resistance P-glycoprotein transport function with an organotechnetium cation. Biochemistry 1995;34:12210–20

    CAS  PubMed  Google Scholar 

  39. Perek N, Koumanov F, Denoyer D, Boudard D, Dubois F. Modulation of the multidrug resistance of glioma by glutathione levels depletion—interaction with Tc-99m-sestamibi and Tc-99m-tetrofosmin. Cancer Biother Radiopharm 2002;17:291–302

    Article  CAS  PubMed  Google Scholar 

  40. Denoyer D, Perek N, Le Jeune N, Frere D, Dubois F. The multidrug resistance of in vitro tumor cell lines derived from human breast carcinoma MCF-7 does not influence pentavalent technetium-99m-dimercaptosuccinic acid uptake. Cancer Biother Radiopharm 2003;18:791–801

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ligue Nationale Contre le Cancer-Comité Départemental de la Loire. We would like to thank Prof. Ollagnier, Dr. J.P. Gay-Montchamp and T. Basset, Laboratoire de Paharmacologie-toxicologie, Hopital de Bellevue de Saint-Etienne for assisting in the HPLC experiments. We thank Mr. Saul for his help in translation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Denoyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denoyer, D., Perek, N., Jeune, N.L. et al. In vitro and in vivo evaluation of the influence of type III NaPi co-transporter activity during apoptosis on 99mTc-(V)DMSA uptake in the human leukaemic cell line U937. Eur J Nucl Med Mol Imaging 31, 1421–1427 (2004). https://doi.org/10.1007/s00259-004-1605-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1605-y

Keywords

Navigation