Skip to main content
Log in

Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factories

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The goal of sustainable production of biochemicals and biofuels has driven the engineering of microbial cell as factories that convert low-value substrates to high-value products. Xylose is the second most abundant sugar substrate in lignocellulosic hydrolysates. We analyzed the mechanisms of xylose metabolism using genome sequencing data of 492 industrially relevant bacterial species in the mini-review. The analysis revealed the xylose isomerase and Weimberg pathways as the major routes across diverse routes of bacterial xylose metabolism. In addition, we discuss recent developments in metabolic engineering of xylose metabolism in industrial microorganisms. Genome-scale analyses have revealed xylose pathway-specific flux landscapes. Overall, a comprehensive understanding of bacterial xylose metabolism could be useful for the feasible development of microbial cell factories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alkim C, Trichez D, Cam Y, Spina L, François JM, Walther T (2016) The synthetic xylulose-1 phosphate pathway increases production of glycolic acid from xylose-rich sugar mixtures. Biotechnol Biofuels 9(1):201

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogorad IW, Lin T-S, Liao JC (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502:693–697

    Article  CAS  PubMed  Google Scholar 

  • Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of gamma-valerolactone to liquid alkenes for transportation fuels. Science 327(5969):1110–1114

    Article  CAS  PubMed  Google Scholar 

  • Brüsseler C, Radek A, Tenhaef N, Krumbach K, Noack S, Marienhagen J (2017) The myo-inositol/proton symporter IolT1 contributes to d-xylose uptake in Corynebacterium glutamicum. Bioresour Technol 249:953–961

    Article  PubMed  Google Scholar 

  • Buschke N, Becker J, Schafer R, Kiefer P, Biedendieck R, Wittmann C (2013) Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol J 8(5):557–570

    Article  CAS  PubMed  Google Scholar 

  • Buschke N, Schröder H, Wittmann C (2011) Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6(3):306–317

    Article  CAS  PubMed  Google Scholar 

  • Cabulong RB, Lee W-K, Bañares AB, Ramos KRM, Nisola GM, Valdehuesa KNG, Chung W-J (2018) Engineering Escherichia coli for glycolic acid production from D-xylose through the Dahms pathway and glyoxylate bypass. Appl Microbiol Biotechnol 102(5):2179–2189

    Article  CAS  PubMed  Google Scholar 

  • Cam Y, Alkim C, Trichez D, Trebosc V, Vax A, Bartolo F, Besse P, François JM, Walther T (2016) Engineering of a synthetic metabolic pathway for the assimilation of (d)-xylose into value-added chemicals. ACS Synth Biol 5(7):607–618

    Article  CAS  PubMed  Google Scholar 

  • Choi SY, Kim WJ, Yu SJ, Park SJ, Im SG, Lee SY (2017) Engineering the xylose-catabolizing Dahms pathway for production of poly(d-lactate-co-glycolate) and poly(d-lactate-co-glycolate-co-d-2-hydroxybutyrate) in Escherichia coli. Microb Biotechnol 10(6):1353–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SY, Park SJ, Kim WJ, Yang JE, Lee H, Shin J, Lee SY (2016) One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat Biotechnol 34(4):435–440

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502(7472):571–574

    Article  CAS  PubMed  Google Scholar 

  • Chomvong K, Bauer S, Benjamin DI, Li X, Nomura DK, Cate JH (2016) Bypassing the pentose phosphate pathway: towards modular utilization of xylose. PLoS One 11(6):e0158111

    Article  PubMed  PubMed Central  Google Scholar 

  • Cirino PC, Chin JW, Ingram LO (2006) Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol Bioeng 95(6):1167–1176

    Article  CAS  PubMed  Google Scholar 

  • de Vries W, Stouthamer AH (1968) Fermentation of glucose, lactose, galactose, mannitol, and xylose by bifidobacteria. J Bacteriol 96(2):472–478

    PubMed  PubMed Central  Google Scholar 

  • Dhar KS, Wendisch VF, Nampoothiri KM (2016) Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars. J Biotechnol 230:63–71

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Fernández D, Lozano-Martínez P, Buey RM, Revuelta JL, Jiménez A (2017) Utilization of xylose by engineered strains of Ashbya gossypii for the production of microbial oils. Biotechnol Biofuels 10(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Doten RC, Mortlock RP (1985) Inducible xylitol dehydrogenases in enteric bacteria. J Bacteriol 162(2):845–848

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Semman IE, Karlsson FH, Shoaie S, Nookaew I, Soliman TH, Nielsen J (2014) Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Syst Biol 8:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Henard CA, Freed EF, Guarnieri MT (2015) Phosphoketolase pathway engineering for carbon-efficient biocatalysis. Curr Opin Biotechnol 36:183–188

    Article  CAS  PubMed  Google Scholar 

  • Henry CS, Zinner JF, Cohoon MP, Stevens RL (2009) iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol 10(6):R69

    Article  PubMed  PubMed Central  Google Scholar 

  • Janssen HJ, Steinbuchel A (2014) Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 7(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17(3):320–326

    Article  CAS  PubMed  Google Scholar 

  • Jo S, Yoon J, Lee S-M, Um Y, Han SO, Woo HM (2017) Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production. J Biotechnol 258:69–78

    Article  CAS  PubMed  Google Scholar 

  • Jojima T, Noburyu R, Sasaki M, Tajima T, Suda M, Yukawa H, Inui M (2015) Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99(3):1165–1172

    Article  CAS  PubMed  Google Scholar 

  • Jojima T, Omumasaba CA, Inui M, Yukawa H (2009) Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 85(3):471–480

    Article  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104(1–3):5–25

    Article  CAS  PubMed  Google Scholar 

  • Kang M-K, Lee J, Um Y, Lee TS, Bott M, Park SJ, Woo HM (2014) Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization. Appl Microbiol Biotechnol 98(13):1–12

    Article  CAS  Google Scholar 

  • Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72(5):3418–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martinez C, Caspi R, Fulcher C, Gama-Castro S, Kothari A, Krummenacker M, Latendresse M, Muniz-Rascado L, Ong Q, Paley S, Peralta-Gil M, Subhraveti P, Velazquez-Ramirez DA, Weaver D, Collado-Vides J, Paulsen I, Karp PD (2017) The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res 45(D1):D543–D550

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Seo SW, Gao Y, Nam H, Guzman GI, Cho BK, Palsson BO (2018) Systems assessment of transcriptional regulation on central carbon metabolism by Cra and CRP. Nucleic Acids Res 46(6):2901–2917

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SR, Ha S-J, Wei N, Oh EJ, Jin Y-S (2012) Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol 30(5):274–282

    Article  PubMed  Google Scholar 

  • Kjeldsen KR, Nielsen J (2009) In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng 102(2):583–597

    Article  CAS  PubMed  Google Scholar 

  • Lin PP, Jaeger AJ, Wu TY, Xu SC, Lee AS, Gao F, Chen PW, Liao JC (2018) Construction and evolution of an Escherichia coli strain relying on nonoxidative glycolysis for sugar catabolism. Proc Natl Acad Sci U S A 115(14):3538–3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Zhang L, Tang W, Gu Y, Hua Q, Yang S, Jiang W, Yang C (2012) Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed by 13C metabolic flux analysis. J Bacteriol 194(19):5413–5422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA (2014) Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone. Science 343(6168):277–280

    Article  CAS  PubMed  Google Scholar 

  • McMillan JD, Jennings EW, Mohagheghi A, Zuccarello M (2011) Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover. Biotechnol Biofuels 4(1):29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6(2):131–140

    Article  PubMed  Google Scholar 

  • Nielsen J, Keasling Jay D (2016) Engineering cellular metabolism. Cell 164(6):1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Okano K, Yoshida S, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2009) Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75(24):7858–7861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BO (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Mol Syst Biol 7:535

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira B, Li Z-J, De Mey M, Lim CG, Zhang H, Hoeltgen C, Stephanopoulos G (2016) Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate. Metab Eng 34:80–87

    Article  CAS  PubMed  Google Scholar 

  • Radek A, Krumbach K, Gätgens J, Wendisch V, Wiechert W, Bott M, Noack S, Marienhagen J (2014) Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. J Biotechnol 192 Pt A:156–160

    Article  PubMed  Google Scholar 

  • Radek A, Müller M-F, Gätgens J, Eggeling L, Krumbach K, Marienhagen J, Noack S (2016) Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains. J Biotechnol 231:160–166

    Article  CAS  PubMed  Google Scholar 

  • Radek A, Tenhaef N, Müller M-F, Brüsseler C, Wiechert W, Marienhagen J, Polen T, Noack S (2017) Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved d-xylose utilization. Bioresour Technol 245:1377–1385

    Article  CAS  PubMed  Google Scholar 

  • Rossoni L, Carr R, Baxter S, Cortis R, Thorpe T, Eastham G, Stephens G (2018) Engineering Escherichia coli to grow constitutively on D-xylose using the carbon-efficient Weimberg pathway. Microbiology 164(3):287–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki M, Jojima T, Inui M, Yukawa H (2010) Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86(4):1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H (2009) Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85(1):105–115

    Article  CAS  PubMed  Google Scholar 

  • Seo SW, Gao Y, Kim D, Szubin R, Yang J, Cho BK, Palsson BO (2017) Revealing genome-scale transcriptional regulatory landscape of OmpR highlights its expanded regulatory roles under osmotic stress in Escherichia coli K-12 MG1655. Sci Rep 7(1):2181

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo SW, Kim D, Latif H, O'Brien EJ, Szubin R, Palsson BO (2014) Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. Nat Commun 5:4910

    Article  CAS  PubMed  Google Scholar 

  • Seo SW, Kim D, O'Brien EJ, Szubin R, Palsson BO (2015a) Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli. Nat Commun 6:7970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo SW, Kim D, Szubin R, Palsson BO (2015b) Genome-wide reconstruction of OxyR and SoxRS transcriptional regulatory networks under oxidative stress in Escherichia coli K-12 MG1655. Cell Rep 12(8):1289–1299

    Article  CAS  PubMed  Google Scholar 

  • Sonderegger M, Schumperli M, Sauer U (2004) Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl Environ Microbiol 70(5):2892–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280):559–562

    Article  CAS  PubMed  Google Scholar 

  • Stephen Dahms A (1974) 3-Deoxy-D-pentulosonic acid aldolase and its role in a new pathway of D-xylose degradation. Biochem Biophys Res Commun 60(4):1433–1439

    Article  Google Scholar 

  • Teusink B, Wiersma A, Molenaar D, Francke C, de Vos WM, Siezen RJ, Smid EJ (2006) Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model. J Biol Chem 281(52):40041–40048

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Shen X, Lin Y, Chen Z, Yang Y, Yuan Q, Yan Y (2018) Investigation of the synergetic effect of xylose metabolic pathways on the production of Glutaric acid. ACS Synth Biol 7(1):24–29

    Article  CAS  PubMed  Google Scholar 

  • Wasserstrom L, Portugal-Nunes D, Almqvist H, Sandström AG, Lidén G, Gorwa-Grauslund MF (2018) Exploring D-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway. AMB Express 8(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  • Weimberg R (1961) Pentose oxidation by Pseudomonas fragi. J Biol Chem 236:629–635

    CAS  PubMed  Google Scholar 

  • Yim SS, Choi JW, Lee SH, Jeon EJ, Chung W-J, Jeong KJ (2017) Engineering of Corynebacterium glutamicum for consolidated conversion of hemicellulosic biomass into xylonic acid. Biotechnol J 12(11):1700040

    Article  Google Scholar 

  • Yim SS, Choi JW, Lee SH, Jeong KJ (2016) Modular optimization of a hemicellulose-utilizing pathway in Corynebacterium glutamicum for consolidated bioprocessing of hemicellulosic biomass. ACS Synth Biol 5(4):334–343

    Article  CAS  PubMed  Google Scholar 

  • Zhang G-C, Liu J-J, Kong II, Kwak S, Jin Y-S (2015) Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr Opin Chem Biol 29:49–57

    Article  PubMed  Google Scholar 

  • Zhang J, Babtie A, Stephanopoulos G (2012) Metabolic engineering: enabling technology of a bio-based economy. Curr Opin Chem Eng 1(4):355–362

    Article  Google Scholar 

  • Zhu X, Zhao D, Qiu H, Fan F, Man S, Bi C, Zhang X (2017) The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway. Metab Eng 43:37–45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate fruitful discussions with Mr. Jungseok Lee, Ms. Suah Jo, and Mr. Seung Soo Lee. Also, the authors appreciate helpful discussions with Ms. Ina Bang.

Funding

This work was supported by Korea CCS R&D Center (KCRC) (2017M1A8A1072034) and Basic Science Research Program (2017R1A2B2002566) through the National Research Foundation of Korea, funded by the Korean Government (Ministry of Science and ICT). In addition, this work was partially supported by the Golden Seed Project (213008-05-2-WT911) grant, funded by the Ministry of Agriculture and the Ministry of Oceans and Fisheries. Financial support from the CJ Grant Program (CG-20-16-01-0003) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Min Woo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not involve any studies with human participants performed by any of the authors.

Consent for publication

Not applicable.

Electronic supplementary material

ESM 1

(PDF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Woo, H.M. Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factories. Appl Microbiol Biotechnol 102, 9471–9480 (2018). https://doi.org/10.1007/s00253-018-9353-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9353-2

Keywords

Navigation