Skip to main content
Log in

The ZntA-like NpunR4017 plays a key role in maintaining homeostatic levels of zinc in Nostoc punctiforme

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Analysis of cellular response to zinc exposure provides insights into how organisms maintain homeostatic levels of zinc that are essential, while avoiding potentially toxic cytosolic levels. Using the cyanobacterium Nostoc punctiforme as a model, qRT-PCR analyses established a profile of the changes in relative mRNA levels of the ZntA-like zinc efflux transporter NpunR4017 in response to extracellular zinc. In cells treated with 18 μM of zinc for 1 h, NpunR4017 mRNA levels increased by up to 1300 % above basal levels. The accumulation and retention of radiolabelled 65Zn by NpunR4107-deficient and overexpressing strains were compared to wild-type levels. Disruption of NpunR4017 resulted in a significant increase in zinc accumulation up to 24 % greater than the wild type, while cells overexpressing NpunR4107 accumulated 22 % less than the wild type. Accumulation of 65Zn in ZntA Escherichia coli overexpressing NpunR4017 was reduced by up to 21 %, indicating the capacity for NpunR4017 to compensate for the loss of ZntA. These findings establish the newly identified NpunR4017 as a zinc efflux transporter and a key transporter for maintaining zinc homeostasis in N. punctiforme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ackland ML, McArdle HJ (1996) Cation-dependent uptake of zinc in human fibroblasts. Biometals 9:29–37

    Article  CAS  PubMed  Google Scholar 

  • Anderson DC, Campbell EL, Meeks JC (2006) A soluble 3D LC/MS/MS proteome of the filamentous cyanobacterium Nostoc punctiforme. J Proteome Res 5:3096–104

    Article  CAS  PubMed  Google Scholar 

  • Anton A, Weltrowski A, Haney CJ, Franke S, Grass G, Rensing C, Nies DH (2004) Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans CH34 and Escherichia coli. J Bacteriol 186:7499–507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aralp LC, Erdincler A, Onay TT (2001) Heavy metal removal from wastewater and leachate co-treatment sludge by sulfur oxidizing bacteria. Water Sci Technol 44:53–8

    CAS  PubMed  Google Scholar 

  • Argueta C, Yuksek K, Summers M (2004) Construction and use of GFP reporter vectors for analysis of cell-type-specific gene expression in Nostoc punctiforme. J Microbiol Methods 59:181–8

    Article  CAS  PubMed  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008

    PubMed  Google Scholar 

  • Bernsel A, Viklund H, Falk J, Lindahl E, von Heijne G, Elofsson A (2008) Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci U S A 105:7177–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernsel A, Viklund H, Hennerdal A, Elofsson A (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37:W465–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blindauer CA (2008) Zinc-handling in cyanobacteria: an update. Chem Biodivers 5:1990–2013

    Article  CAS  PubMed  Google Scholar 

  • Campbell EL, Summers ML, Christman H, Martin ME, Meeks JC (2007) Global gene expression patterns of Nostoc punctiforme in steady-state dinitrogen-grown heterocyst-containing cultures and at single time points during the differentiation of akinetes and hormogonia. J Bacteriol 189:5247–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–22

    Article  CAS  PubMed  Google Scholar 

  • Faramarzi MA, Stagars M, Pensini E, Krebs W, Brandl H (2004) Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J Biotechnol 113:321–6

    Article  CAS  PubMed  Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6

    Article  CAS  PubMed  Google Scholar 

  • Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–67

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hou Z, Mitra B (2003) The metal specificity and selectivity of ZntA from Escherichia coli using the acylphosphate intermediate. J Biol Chem 278:28455–61

    Article  CAS  PubMed  Google Scholar 

  • Hudek L, Pearson LA, Michalczyk A, Neilan BA, Ackland ML (2013a) Functional characterization of the twin ZIP/SLC39 metal transporters, NpunF3111 and NpunF2202 in Nostoc punctiforme. Appl Microbiol Biotechnol 97:8649–62

    Article  CAS  PubMed  Google Scholar 

  • Hudek L, Pearson LA, Michalczyk A, Neilan BA, Ackland ML (2013b) Molecular and cellular characterisation of the zinc uptake (Znu) system of Nostoc punctiforme. FEMS Microbiol Ecol 86:149–71

    Article  CAS  PubMed  Google Scholar 

  • Hudek L, Rai LC, Freestone D, Michalczyk A, Gibson M, Song YF, Ackland ML (2009) Bioinformatic and expression analyses of genes mediating zinc homeostasis in Nostoc punctiforme. Appl Environ Microbiol 75:784–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hudek L, Rai S, Michalczyk A, Rai LC, Neilan BA, Ackland ML (2012) Physiological metal uptake by Nostoc punctiforme. Biometals 25:893–903

    Article  CAS  PubMed  Google Scholar 

  • Jiang HB, Lou WJ, Du HY, Price NM, Qiu BS (2012) Sll1263, a unique cation diffusion facilitator protein that promotes iron uptake in the cyanobacterium Synechocystis sp. Strain PCC 6803. Plant Cell Physiol 53:1404–17

    Article  CAS  PubMed  Google Scholar 

  • Korehi H, Blothe M, Sitnikova MA, Dold B, Schippers A (2013) Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile. Environ Sci Technol 47:2189–96

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Jacobsen FE, Giedroc DP (2009) Coordination chemistry of bacterial metal transport and sensing. Chem Rev 109:4644–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meeks JC, Castenholz RW (1971) Growth and photosynthesis in an extreme thermophile, Synechococcus lividus (Cyanophyta). Arch Mikrobiol 78:25–41

    Article  CAS  PubMed  Google Scholar 

  • Michalczyk AA, Ackland ML (2013) hZip1 (hSLC39A1) regulates zinc homoeostasis in gut epithelial cells. Genes Nutr 8:475–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okkeri J, Haltia T (2006) The metal-binding sites of the zinc-transporting P-type ATPase of Escherichia coli. Lys693 and Asp714 in the seventh and eighth transmembrane segments of ZntA contribute to the coupling of metal binding and ATPase activity. Biochim Biophys Acta 1757:1485–95

    Article  CAS  PubMed  Google Scholar 

  • Outten CE, O'Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–92

    Article  CAS  PubMed  Google Scholar 

  • Outten CE, Tobin DA, Penner-Hahn JE, O'Halloran TV (2001) Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein. Biochemistry 40:10417–23

    Article  CAS  PubMed  Google Scholar 

  • Palmiter RD, Huang L (2004) Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch 447:744–51

    Article  CAS  PubMed  Google Scholar 

  • Qiu A, Hogstrand C (2005) Functional expression of a low-affinity zinc uptake transporter (FrZIP2) from pufferfish (Takifugu rubripes) in MDCK cells. Biochem J 390:777–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ran L, Huang F, Ekman M, Klint J, Bergman B (2007) Proteomic analyses of the photoauto- and diazotrophically grown cyanobacterium Nostoc sp. PCC 73102. Microbiology 153:608–18

    Article  CAS  PubMed  Google Scholar 

  • Rensing C, Ghosh M, Rosen BP (1999) Families of soft-metal-ion-transporting ATPases. J Bacteriol 181:5891–7

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rensing C, Mitra B, Rosen BP (1997) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci U S A 94:14326–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular Cloning: A laboratory manual, vol 1–3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Summers ML, Wallis JG, Campbell EL, Meeks JC (1995) Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133. J Bacteriol 177:6184–94

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsai KJ, Yoon KP, Lynn AR (1992) ATP-dependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis. J Bacteriol 174:116–21

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang D, Hosteen O, Fierke CA (2012) ZntR-mediated transcription of zntA responds to nanomolar intracellular free zinc. J Inorg Biochem 111:173–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support received from the Australian Society for Microbiology whom supported this work through the Millis-Colwell Award exchange program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Hudek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudek, L., Bräu, L., Michalczyk, A.A. et al. The ZntA-like NpunR4017 plays a key role in maintaining homeostatic levels of zinc in Nostoc punctiforme . Appl Microbiol Biotechnol 99, 10559–10574 (2015). https://doi.org/10.1007/s00253-015-6922-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6922-5

Keywords

Navigation