Skip to main content
Log in

Deglycosylated milin unfolds via inactive monomeric intermediates

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The effect of deglycosylation on the physiological and functional organization of milin was studied under different denaturizing conditions. Trifluoromethanesulfonic acid mediated deglycosylation resulted in insoluble milin, which was found to be soluble only in 1.5 M GuHCl with native-like folded structure. Kinetic stability, proteolytic activity, and dimeric association were lost in deglycosylated milin. Urea-induced unfolding revealed two inactive, highly stable equilibrium intermediates at pH 7.0 and pH 2.0. These intermediates were stable between 5.5–6.5 and 5.0–6.0 M total chaotropes (urea + 1.5 M GuHCl) at pH 7.0 and pH 2.0, respectively. GuHCl-induced unfolding was cooperative and noncoincidental with a broad transition range (2.0–5.0 M) at pH 7.0 and pH 2.0. Equilibrium unfolding of deglycosylated milin by urea and GuHCl substantiates the involvement of various inactive monomeric intermediates. This study provides a way to understand the role of glycosylation in the unfolding mechanism, stability, and functional activity of the serine protease milin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GuHCl:

Guanidine hydrochloride

TFMS:

Trifluoromethanesulfonic acid

UV:

Ultraviolet

CD:

Circular dichroism

ANS:

1-Anilino-8-naphthalene sulfonic acid

References

  • Apiyo D, Jones K, Guidry J, Wittung-Stafshede P (2001) Equilibrium unfolding of dimeric desulfoferrodoxin involves a monomeric intermediate: iron cofactors dissociate after polypeptide unfolding. Biochemistry 40:4940–4948

    Article  CAS  PubMed  Google Scholar 

  • Bernard BA, Newton SA, Olden K (1983) Effect of size and location of the oligosaccharide chain on protease degradation of bovine pancreatic ribonuclease. J Biol Chem 258:12198–12202

    CAS  PubMed  Google Scholar 

  • Bosques CJ, Tschampel SM, Woods RJ, Imperiali B (2004) Effects of glycosylation on peptide conformation: a synergistic experimental and computational study. J Am Chem Soc 126:8421–8425

    Article  CAS  PubMed  Google Scholar 

  • Cassim JY, Yang JT (1969) A computerized calibration of the circular dichrometer. Biochemistry 8:1947–1951

    Article  CAS  PubMed  Google Scholar 

  • Cupo JF, Allen RA, Jesaitis AJ, Bokoch GM (1989) Reconstitution and characterization of the human neutrophil N-formyl peptide receptor and GTP binding proteins in phospholipid vesicles. Biochim Biophys Acta 982:31–40

    Article  CAS  PubMed  Google Scholar 

  • Curtis MA, Thickett A, Slaney JM, Rangarajan M, Aduse-Opoku J, Shepherd P, Paramonov N, Hounsell EF (1999) Variable carbohydrate modifications to the catalytic chains of the RgpA and RgpB proteases of Porphyromonas gingivalis W50. Infect Immun 67:3816–3823

    CAS  PubMed  Google Scholar 

  • Daniels R, Kurowski B, Johnson AE, Hebert DN (2003) N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell 11:79–90

    Article  CAS  PubMed  Google Scholar 

  • Edge AS (2003) Deglycosylation of glycoproteins with trifluoromethanesulphonic acid: elucidation of molecular structure and function. Biochem J 376:339–350

    Article  CAS  PubMed  Google Scholar 

  • Gagneux P, Varki A (1999) Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9:747–755

    Article  CAS  PubMed  Google Scholar 

  • Grafl R, Lang K, Vogl H, Schmid FX (1987) The mechanism of folding of pancreatic ribonucleases is independent of the presence of covalently linked carbohydrate. J Biol Chem 262:10624–10629

    CAS  PubMed  Google Scholar 

  • Halfman CJ, Nishida T (1971) Nature of the alteration of the fluorescence spectrum of bovine serum albumin produced by the binding of dodecyl sulfate. Biochim Biophys Acta 243:294–303

    CAS  PubMed  Google Scholar 

  • Hirsch C, Misaghi S, Blom D, Pacold ME, Ploegh HL (2004) Yeast N-glycanase distinguishes between native and non-native glycoproteins. EMBO Rep 5:201–206

    Article  CAS  PubMed  Google Scholar 

  • Imperiali B, O’Connor SE (1999) Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Curr Opin Chem Biol 3:643–649

    Article  CAS  PubMed  Google Scholar 

  • Kuster B, Krogh TN, Mortz E, Harvey DJ (2001) Glycosylation analysis of gel-separated proteins. Proteomics 1:350–361

    Article  CAS  PubMed  Google Scholar 

  • Lynn KR, Clevette-Radford NA (1988) Proteases of euphorbiaceae. Phytochemistry 27:45–50

    Article  CAS  Google Scholar 

  • Malech HL, Gardner JP, Heiman DF, Rosenzweig SA (1985) Asparagine-linked oligosaccharides on formyl peptide chemotactic receptors of human phagocytic cells. J Biol Chem 260:2509–2514

    CAS  PubMed  Google Scholar 

  • O’Conner SE, Imperiali B (1998) A molecular basis for glycosylation-induced conformational switching. Chem Biol 5:427–437

    Article  PubMed  Google Scholar 

  • O’Connor SE, Imperiali B (1996) Modulation of protein structure and function by asparagine-linked glycosylation. Chem Biol 3:803–812

    Article  PubMed  Google Scholar 

  • Pace CN, Shirley BA, McNutt M, Gajiwala K (1996) Forces contributing to the conformational stability of proteins. Faseb J 10:75–83

    CAS  PubMed  Google Scholar 

  • Petrescu SM, Branza-Nichita N, Negroiu G, Petrescu AJ, Dwek RA (2000) Tyrosinase and glycoprotein folding: roles of chaperones that recognize glycans. Biochemistry 39:5229–5237

    Article  CAS  PubMed  Google Scholar 

  • Quehenberger O, Prossnitz ER, Cochrane CG, Ye RD (1992) Absence of G(i) proteins in the Sf9 insect cell. Characterization of the uncoupled recombinant N-formyl peptide receptor. J Biol Chem 267:19757–19760

    CAS  PubMed  Google Scholar 

  • Reuter G, Gabius HJ (1999) Eukaryotic glycosylation: whim of nature or multipurpose tool? Cell Mol Life Sci 55:368–422

    Article  CAS  PubMed  Google Scholar 

  • Shental-Bechor D, Levy Y (2008) Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc Natl Acad Sci U S A 105:8256–8261

    Article  CAS  PubMed  Google Scholar 

  • Soulages JL, Pennington J, Bendavid O, Wells MA (1998) Role of glycosylation in the lipid-binding activity of the exchangeable apolipoprotein, apolipophorin-III. Biochem Biophys Res Commun 243:372–376

    Article  CAS  PubMed  Google Scholar 

  • Stryer L (1965) The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol 13:482–495

    Article  CAS  PubMed  Google Scholar 

  • Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    Article  CAS  PubMed  Google Scholar 

  • Wenzel-Seifert K, Seifert R (2003) Critical role of N-terminal N-glycosylation for proper folding of the human formyl peptide receptor. Biochem Biophys Res Commun 301:693–698

    Article  CAS  PubMed  Google Scholar 

  • Wenzel-Seifert K, Hurt CM, Seifert R (1998) High constitutive activity of the human formyl peptide receptor. J Biol Chem 273:24181–24189

    Article  CAS  PubMed  Google Scholar 

  • Wujek P, Kida E, Walus M, Wisniewski KE, Golabek AA (2004) N-glycosylation is crucial for folding, trafficking, and stability of human tripeptidyl-peptidase I. J Biol Chem 279:12827–12839

    Article  CAS  PubMed  Google Scholar 

  • Xia K, Manning M, Hesham H, Lin Q, Bystroff C, Colon W (2007) Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE. Proc Natl Acad Sci U S A 104:17329–17334

    Article  CAS  PubMed  Google Scholar 

  • Yadav SC, Jagannadham MV (2009) Complete conformational stability of kinetically stable dimeric serine protease milin against pH, temperature, urea, and proteolysis. Eur Biophys J 39:981–991

    Article  Google Scholar 

  • Yadav SC, Pande M, Jagannadham MV (2006) Highly stable glycosylated serine protease from the medicinal plant Euphorbia milii. Phytochemistry 67:1414–1426

    Article  CAS  PubMed  Google Scholar 

  • Yadav SC, Jagannadham MV, Kundu S (2009) A kinetically stable plant subtilase with unique peptide mass fingerprints and dimerization properties. Biophys Chem 139:13–23

    Article  CAS  PubMed  Google Scholar 

  • Yadav SC, Kundu S, Jaganadham MV (2010) Equilibrium unfolding of kinetically stable serine protease milin: presence of various active and inactive dimeric intermediates. Eur Biophys J (in press)

Download references

Acknowledgments

Financial assistance to S.C.Y. from the Council of Scientific and Industrial Research (CSIR) Government of India, in the form of a research fellowship and the financial assistance from UGC and DBT, Government of India, for infrastructure are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subhash Chandra Yadav or Medicherla V. Jagannadham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, S.C., Prasanna Kumari, N.K. & Jagannadham, M.V. Deglycosylated milin unfolds via inactive monomeric intermediates. Eur Biophys J 39, 1581–1588 (2010). https://doi.org/10.1007/s00249-010-0615-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0615-x

Keywords

Navigation