Skip to main content

Advertisement

Log in

Equilibrium unfolding of kinetically stable serine protease milin: the presence of various active and inactive dimeric intermediates

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Kinetically stable homodimeric serine protease milin reveals high conformational stability against temperature, pH and chaotrope [urea, guanidine hydrochloride (GuHCl) and guanidine isothiocynate (GuSCN)] denaturation as probed by circular dichroism, fluorescence, differential scanning calorimetry and activity measurements. GuSCN induces complete unfolding in milin, whereas temperature, urea and GuHCl induce only partial unfolding even at low pH, through several intermediates with distinct characteristics. Some of these intermediates are partially active (viz. in urea and 2 M GuHCl at pH 7.0), and some exhibited strong ANS binding as well. All three tryptophans in the protein seem to be buried in a rigid, compact core as evident from intrinsic fluorescence measurements coupled to equilibrium unfolding experiments. The protein unfolds as a dimer, where the unfolding event precedes dimer dissociation as confirmed by hydrodynamic studies. The solution studies performed here along with previous biochemical characterization indicate that the protein has α-helix and β-sheet rich regions or structural domains that unfold independently, and the monomer association is isologous. The complex unfolding pathway of milin and the intermediates has been characterized. The physical, physiological and probable therapeutic importance of the results has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANS:

8-Anilino-1-naphthalenesulfonic acid

BSA:

Bovine serum albumin

CD:

Circular dichorism

DSC:

Differential scanning calorimetry

FPLC:

Fast protein liquid chromatography

GuHCl:

Guanidine hydrochloride

GuSCN:

Guanidine isothiocynate

UV:

Ultraviolet

References

  • Barry JK, Matthews KS (1999) Thermodynamic analysis of unfolding and dissociation in lactose repressor protein. Biochemistry 38:6520–6528

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Tsuge H, Almassy RJ, Gribskov CL, Katoh S, Vanderpool DL, Margosiak SA, Pinko C, Matthews DA, Kan CC (1996) Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad. Cell 86:835–843

    Article  CAS  PubMed  Google Scholar 

  • Clark AC, Sinclair JF, Baldwin TO (1993) Folding of bacterial luciferase involves a non-native heterodimeric intermediate in equilibrium with the native enzyme and the unfolded subunits. J Biol Chem 268:10773–10779

    CAS  PubMed  Google Scholar 

  • Cunningham EL, Jaswal SS, Sohl JL, Agard DA (1999) Kinetic stability as a mechanism for protease longevity. Proc Natl Acad Sci U S A 96:11008–11014

    Article  CAS  PubMed  Google Scholar 

  • Dams T, Jaenicke R (1999) Stability and folding of dihydrofolate reductase from the hyperthermophilic bacterium Thermotoga maritima. Biochemistry 38:9169–9178

    Article  CAS  PubMed  Google Scholar 

  • Dong A, Lam T (2005) Equilibrium titrations of acid-induced unfolding-refolding and salt-induced molten globule of cytochrome c by FT-IR spectroscopy. Arch Biochem Biophys 436:154–160

    Article  CAS  PubMed  Google Scholar 

  • Edwin F, Jagannadham MV (1998) Sequential unfolding of papain in molten globule state. Biochem Biophys Res Commun 252:654–660

    Article  CAS  PubMed  Google Scholar 

  • Edwin F, Jagannadham MV (2000) Single disulfide bond reduced papain exists in a compact intermediate state. Biochim Biophys Acta 1479:69–82

    CAS  PubMed  Google Scholar 

  • Edwin F, Sharma YV, Jagannadham MV (2002) Stabilization of molten globule state of papain by urea. Biochem Biophys Res Commun 290:1441–1446

    Article  CAS  PubMed  Google Scholar 

  • Fink AL (1995) Compact intermediate states in protein folding. Annu Rev Biophys Biomol Struct 24:495–522

    Article  CAS  PubMed  Google Scholar 

  • Gittelman MS, Matthews CR (1990) Folding and stability of trp aporepressor from Escherichia coli. Biochemistry 29:7011–7020

    Article  CAS  PubMed  Google Scholar 

  • Go N (1983) Theoretical studies of protein folding. Annu Rev Biophys Bioeng 12:183–210

    Article  CAS  PubMed  Google Scholar 

  • Guidry JJ, Moczygemba CK, Steede NK, Landry SJ, Wittung-Stafshede P (2000) Reversible denaturation of oligomeric human chaperonin 10: denatured state depends on chemical denaturant. Protein Sci 9:2109–2117

    Article  CAS  PubMed  Google Scholar 

  • Herold M, Kirschner K (1990) Reversible dissociation and unfolding of aspartate aminotransferase from Escherichia coli: characterization of a monomeric intermediate. Biochemistry 29:1907–1913

    Article  CAS  PubMed  Google Scholar 

  • Hink-Schauer C, Estebanez-Perpina E, Kurschus FC, Bode W, Jenne DE (2003) Crystal structure of the apoptosis-inducing human granzyme A dimer. Nat Struct Biol 10:535–540

    Article  CAS  PubMed  Google Scholar 

  • Hornby JA, Luo JK, Stevens JM, Wallace LA, Kaplan W, Armstrong RN, Dirr HW (2000) Equilibrium folding of dimeric class mu glutathione transferases involves a stable monomeric intermediate. Biochemistry 39:12336–12344

    Article  CAS  PubMed  Google Scholar 

  • Jaswal SS, Sohl JL, Davis JH, Agard DA (2002) Energetic landscape of alpha-lytic protease optimizes longevity through kinetic stability. Nature 415:343–346

    Article  CAS  PubMed  Google Scholar 

  • Jones MN, Skinner HA, Tipping E (1975) The interaction between bovine serum albumin and surfactants. Biochem J 147:229–234

    CAS  PubMed  Google Scholar 

  • Kim PS, Baldwin RL (1982) Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu Rev Biochem 51:459–489

    Article  CAS  PubMed  Google Scholar 

  • Kim YR, Hahn JS, Hong H, Jeong W, Song NW, Shin HC, Kim D (1999) Dynamic equilibrium unfolding pathway of human tumor necrosis factor-alpha induced by guanidine hydrochloride. Biochim Biophys Acta 1429:486–495

    CAS  PubMed  Google Scholar 

  • Kuwajima K (1989) The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6:87–103

    Article  CAS  PubMed  Google Scholar 

  • Manavalan P, Johnson WC Jr (1983) Sensitivity of circular dichroism to protein tertiary structure class. Nature 305:831

    Article  CAS  Google Scholar 

  • Manavalan P, Johnson WC Jr, Modrich P (1984) Prediction of secondary structure for Eco RI endonuclease. J Biol Chem 259:11666–11667

    CAS  PubMed  Google Scholar 

  • Manning M, Colon W (2004) Structural basis of protein kinetic stability: resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward beta-sheet structure. Biochemistry 43:11248–11254

    Article  CAS  PubMed  Google Scholar 

  • Mei G, Di Venere A, Rosato N, Finazzi-Agro A (2005) The importance of being dimeric. Febs J 272:16–27

    Article  CAS  PubMed  Google Scholar 

  • Milla ME, Sauer RT (1994) P22 Arc repressor: folding kinetics of a single-domain, dimeric protein. Biochemistry 33:1125–1133

    Article  CAS  PubMed  Google Scholar 

  • Pace CN (1990) Measuring and increasing protein stability. Trends Biotechnol 8:93–98

    Article  CAS  PubMed  Google Scholar 

  • Panse VG, Swaminathan CP, Aloor JJ, Surolia A, Varadarajan R (2000) Unfolding thermodynamics of the tetrameric chaperone, SecB. Biochemistry 39:2362–2369

    Article  CAS  PubMed  Google Scholar 

  • Pettit SC, Gulnik S, Everitt L, Kaplan AH (2003) The dimer interfaces of protease and extra-protease domains influence the activation of protease and the specificity of GagPol cleavage. J Virol 77:366–374

    Article  CAS  PubMed  Google Scholar 

  • Ramstein J, Hervouet N, Coste F, Zelwer C, Oberto J, Castaing B (2003) Evidence of a thermal unfolding dimeric intermediate for the Escherichia coli histone-like HU proteins: thermodynamics and structure. J Mol Biol 331:101–121

    Article  CAS  PubMed  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    CAS  PubMed  Google Scholar 

  • Reddy GB, Bharadwaj S, Surolia A (1999) Thermal stability and mode of oligomerization of the tetrameric peanut agglutinin: a differential scanning calorimetry study. Biochemistry 38:4464–4470

    Article  CAS  PubMed  Google Scholar 

  • Redfield RR, Anfinsen CB (1956) The structure of ribonuclease. II. The preparation, separation, and relative alignment of large enzymatically produced fragments. J Biol Chem 221:385–404

    CAS  PubMed  Google Scholar 

  • Reynolds JA, Herbert S, Polet H, Steinhardt J (1967) The binding of divers detergent anions to bovine serum albumin. Biochemistry 6:937–947

    Article  CAS  PubMed  Google Scholar 

  • Risse B, Stempfer G, Rudolph R, Mollering H, Jaenicke R (1992) Stability and reconstitution of pyruvate oxidase from Lactobacillus plantarum: dissection of the stabilizing effects of coenzyme binding and subunit interaction. Protein Sci 1:1699–1709

    Article  CAS  PubMed  Google Scholar 

  • Schiffer CA, Dotsch V (1996) The role of protein–solvent interactions in protein unfolding. Curr Opin Biotechnol 7:428–432

    Article  CAS  PubMed  Google Scholar 

  • Service RF (2008) Problem solved* (*sort of). Science 321:784–786

    Article  CAS  PubMed  Google Scholar 

  • Sharma YV, Jagannadham MV (2003) N-terminal domain unfolds first in the sequential unfolding of papain. Protein Pept Lett 10:83–90

    Article  CAS  PubMed  Google Scholar 

  • Silinski P, Fitzgerald MC (2002) A stable dimer in the pH-induced equilibrium unfolding of the homo-hexameric enzyme 4-oxalocrotonate tautomerase (4-OT). Biochemistry 41:4480–4491

    Article  CAS  PubMed  Google Scholar 

  • Smith CJ, Clarke AR, Chia WN, Irons LI, Atkinson T, Holbrook JJ (1991) Detection and characterization of intermediates in the folding of large proteins by the use of genetically inserted tryptophan probes. Biochemistry 30:1028–1036

    Article  CAS  PubMed  Google Scholar 

  • Spelbrink RE, Kolkman A, Slijper M, Killian JA, de Kruijff B (2005) Detection and identification of stable oligomeric protein complexes in Escherichia coli inner membranes: a proteomics approach. J Biol Chem 280:28742–28748

    Article  CAS  PubMed  Google Scholar 

  • Sundd M, Kundu S, Jagannadham MV (2002) Acid and chemical induced conformational changes of ervatamin B. Presence of partially structured multiple intermediates. J Biochem Mol Biol 35:143–154

    CAS  PubMed  Google Scholar 

  • Watt SJ, Sheil MM, Beck JL, Prosselkov P, Otting G, Dixon NE (2007) Effect of protein stabilization on charge state distribution in positive- and negative-ion electrospray ionization mass spectra. J Am Soc Mass Spectrom 18:1605–1611

    Article  CAS  PubMed  Google Scholar 

  • Xia K, Manning M, Hesham H, Lin Q, Bystroff C, Colon W (2007) Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE. Proc Natl Acad Sci U S A 104:17329–17334

    Article  CAS  PubMed  Google Scholar 

  • Yadav SC, Jagannadham MV (2008) Physiological changes and molluscicidal effects of crude latex and Milin on Biomphalaria glabrata. Chemosphere 71:1295–1300

    Article  CAS  PubMed  Google Scholar 

  • Yadav SC, Jagannadham MV (2009) Complete conformational stability of kinetically stable dimeric serine protease milin against pH, temperature, urea, and proteolysis. Eur Biophys J 38:981–991

    Article  CAS  PubMed  Google Scholar 

  • Yadav SC, Pande M, Jagannadham MV (2006) Highly stable glycosylated serine protease from the medicinal plant Euphorbia milii. Phytochemistry 67:1414–1426

    Article  CAS  PubMed  Google Scholar 

  • Yadav SC, Jagannadham MV, Kundu S, Jagannadham MV (2009) A kinetically stable plant subtilase with unique peptide mass fingerprints and dimerization properties. Biophys Chem 139:13–23

    Article  CAS  PubMed  Google Scholar 

  • Yuan C, Li J, Selby TL, Byeon IJ, Tsai MD (1999) Tumor suppressor INK4: comparisons of conformational properties between p16(INK4A) and p18(INK4C). J Mol Biol 294:201–211

    Article  CAS  PubMed  Google Scholar 

  • Zaks A, Klibanov AM (1988) Enzymatic catalysis in nonaqueous solvents. J Biol Chem 263:3194–3201

    CAS  PubMed  Google Scholar 

  • Zhuang P, Eisenstein E, Howell EE (1994) Equilibrium folding studies of tetrameric R67 dihydrofolate reductase. Biochemistry 33:4237–4244

    Article  CAS  PubMed  Google Scholar 

  • Ziegler MM, Goldberg ME, Chaffotte AF, Baldwin TO (1993) Refolding of luciferase subunits from urea and assembly of the active heterodimer. Evidence for folding intermediates that precede and follow the dimerization step on the pathway to the active form of the enzyme. J Biol Chem 268:10760–10765

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial assistance to SCY from CSIR, Government of India, in the form of a research fellowship and to MBU, IMS, BHU from UGC and DBT, Government of India, for infrastructure is acknowledged. Appreciation is also extended to the University of Delhi, New Delhi, and DBT for financial and infrastructural assistance to SK. We are thankful to Prof. Rajiv Bhat, JNU, New Delhi, for providing the DSC facility. We are especially thankful to Prof. Vinod Bhakuni, CDRI, Lucknow, for his help in the CD data verification.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subhash Chandra Yadav, Medicherla V. Jagannadham or Suman Kundu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, S.C., Jagannadham, M.V. & Kundu, S. Equilibrium unfolding of kinetically stable serine protease milin: the presence of various active and inactive dimeric intermediates. Eur Biophys J 39, 1385–1396 (2010). https://doi.org/10.1007/s00249-010-0593-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0593-z

Keywords

Navigation