Skip to main content
Log in

Structural and physico-chemical determinants of the interactions of macrocyclic photosensitizers with cells

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

New therapies have been developed using reactive oxygen species produced by light-activation of photosensitizers (PS). Since the lifetime of these species is extremely short and their diffusion in space is limited, the photo-induced reactions primarily affect the cell organelles labeled by the PS. In addition to the development of molecules with the best optical and photosensitizing properties, considerable research has been done to understand the physico-chemical parameters governing their subcellular localization. In this review, we examine these parameters to establish the structure/efficacy relationships, which allow specific targeting of PS. We examine the effect of subcellular localization on the cellular response to photosensitization processes. We discuss the determinants of subcellular localization, including the hydrophobic/hydrophilic balance, the specific charge effects and the dynamics of PS’ transfer through membranes. Specific targeting can also be achieved with molecular structures able to recognize cellular or intracellular receptors, and this is also dealt with in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

5-ALA:

5-Aminolevulinic acid

AlPcS n :

Sulfonated aluminum phthalocyanine

ATP:

Adenosine-5′-triphosphate

Bcl-2:

Antiapoptotic protein identified on B-cell lymphoma 2

Bid:

BH3 interacting domain death agonist

BPD:

Benzoporphyrin derivative

BPD-MA:

Benzoporphyrin derivative monoacid ring A

Ce6:

Chlorin e6

DP:

Deuteroporphyrin

HP:

Hematoporphyrin

HpD:

Hematoporphyrin derivative

LCP:

Lysyl chlorin p6

m-THPC:

Meso-tetrahydroxyphenylchlorin

PBR:

Benzodiazepine receptor

PCI:

Photochemical internalization

PDT:

Photodynamic therapy

Ppe:

Pyropheophorbide-a

PpIX:

Protoporphyrin IX

PS:

Photosensitizer

ROS:

Reactive oxygen species

SnET2:

Etiopurpurin

TPPS n :

Sulfonated tetraphenylporphyrin

ZnPc:

Zinc phthalocyanine

References

  • Aarons L, Bell D, Waigh R, Ye Q (1982) Parabolic structure-activity relationships: a simple pharmacokinetic model. J Pharm Pharmacol 34:746–749

    Google Scholar 

  • Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74:656–669

    Google Scholar 

  • Akhlynina TV, Jans DA, Rosenkranz AA, Statsyuk NV, Balashova IY, Toth G, Pavo I, Rubin AB, Sobolev AS (1997) Nuclear targeting of chlorin e6 enhances its photosensitizing activity. J Biol Chem 272:20328–20331

    Google Scholar 

  • Almeida RD, Manadas BJ, Carvalho AP, Duarte CB (2004) Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta 1704:59–86

    Google Scholar 

  • Atlante A, Passarella S, Quagliariello E, Moreno G, Salet C (1989) Haematoporphyrin derivative (Photofrin II) photosensitization of isolated mitochondria: inhibition of ADP/ATP translocator. J Photochem Photobiol B 4:35–46

    Google Scholar 

  • Batra S, Iosif CS (1998) Elevated concentrations of mitochondrial peripheral benzodiazepine receptors in ovarian tumors. Int J Oncol 12:1295–1298

    Google Scholar 

  • Beckman WC Jr, Powers SK, Brown JT, Gillespie GY, Bigner DD, Camps JL Jr (1987) Differential retention of rhodamine 123 by avian sarcoma virus-induced glioma and normal brain tissue of the rat in vivo. Cancer 59:266–270

    Google Scholar 

  • Ben-Dror S, Bronshtein I, Wiehe A, Roder B, Senge MO, Ehrenberg B (2006) On the correlation between hydrophobicity, liposome binding and cellular uptake of porphyrin sensitizers. Photochem Photobiol 82:695–701

    Google Scholar 

  • Berg K, Moan J (1994) Lysosomes as photochemical targets. Int J Cancer 59:814–822

    Google Scholar 

  • Berg K, Prasmickaite L, Selbo PK, Hellum M, Bonsted A, Hogset A (2003) Photochemical internalization (PCI)–a novel technology for release of macromolecules from endocytic vesicles. Oftalmologia 56:67–71

    Google Scholar 

  • Berg K, Selbo PK, Prasmickaite L, Tjelle TE, Sandvig K, Moan J, Gaudernack G, Fodstad O, Kjolsrud S, Anholt H, Rodal GH, Rodal SK, Hogset A (1999) Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res 59:1180–1183

    Google Scholar 

  • Berg K, Western A, Bommer JC, Moan J (1990) Intracellular localization of sulfonated meso-tetraphenylporphines in a human carcinoma cell line. Photochem Photobiol 52:481–487

    Google Scholar 

  • Bonneau S, Maman N, Brault D (2004a) Dynamics of pH-dependent self-association and membrane binding of a dicarboxylic porphyrin: a study with small unilamellar vesicles. Biochim Biophys Acta 1661:87–96

    Google Scholar 

  • Bonneau S, Morliere P, Brault D (2004b) Dynamics of interactions of photosensitizers with lipoproteins and membrane-models: correlation with cellular incorporation and subcellular distribution. Biochem Pharmacol 68:1443–1452

    Google Scholar 

  • Bonneau S, Vever-Bizet C, Morliere P, Maziere JC, Brault D (2002) Equilibrium and kinetic studies of the interactions of a porphyrin with low-density lipoproteins. Biophys J 83:3470–3481

    Google Scholar 

  • Bonnett R (1995) Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev 24:19–33

    Google Scholar 

  • Bonnett R, White RD, Winfield UJ, Berenbaum MC (1989) Hydroporphyrins of the meso-tetra(hydroxyphenyl)porphyrin series as tumour photosensitizers. Biochem J 261:277–280

    Google Scholar 

  • Brasseur N, Ali H, Langlois R, Van Lier JE (1988) Biological activities of phthalocyanines-IX. Photosensitization of V-79 chinese hamster cells and EMT-6 mouse mammary tumor by selectively sulfonated zinc phthalocyanines. Photochem Photobiol 47:705–711

    Google Scholar 

  • Brault D, Vever-Bizet C, Le Doan T (1986) Spectrofluorimetric study of porphyrin incorporation into membrane models—evidence for pH effects. Biochim Biophys Acta 857:238–250

    Google Scholar 

  • Candide C, Morliere P, Maziere JC, Goldstein S, Santus R, Dubertret L, Reyftmann JP, Polonovski J (1986) In vitro interaction of the photoactive anticancer porphyrin derivative photofrin II with low density lipoprotein, and its delivery to cultured human fibroblasts. FEBS Lett 207:133–138

    Google Scholar 

  • Chen JY, Mak NK, Yow CM, Fung MC, Chiu LC, Leung WN, Cheung NH (2000) The binding characteristics and intracellular localization of temoporfin (mTHPC) in myeloid leukemia cells: phototoxicity and mitochondrial damage. Photochem Photobiol 72:541–547

    Google Scholar 

  • Chen LB (1988) Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4:155–181

    Google Scholar 

  • Cooper ER, Berner B, Bruce RD (1981) Kinetic analysis of relationship between partition coefficient and biological response. J Pharm Sci 70:57–59

    Google Scholar 

  • Cozzani I, Jori G, Bertoloni G, Milanesi C, Carlini P, Sicuro T, Ruschi A (1985) Efficient photosensitization of malignant human cells in vitro by liposome-bound porphyrins. Chem Biol Interact 53:131–143

    Google Scholar 

  • Dairou J, Vever-Bizet C, Brault D (2002) Self-association of disulfonated deuteroporphyrin and its esters in aqueous solution and photosensitized production of singlet oxygen by the dimers. Photochem Photobiol 75:229–236

    Google Scholar 

  • Dellinger M (1996) Apoptosis or necrosis following Photofrin photosensitization: influence of the incubation protocol. Photochem Photobiol 64:182–187

    Google Scholar 

  • Derycke AS, de Witte PA (2004) Liposomes for photodynamic therapy. Adv Drug Deliv Rev 56:17–30

    Google Scholar 

  • Dougherty TJ (1985) Photodynamic therapy. Adv Exp Med Biol 193:313–328

    Google Scholar 

  • Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Google Scholar 

  • Dummin H, Cernay T, Zimmermann HW (1997) Selective photosensitization of mitochondria in HeLa cells by cationic Zn (II) phthalocyanines with lipophilic side-chains. J Photochem Photobiol B 37:219–229

    Google Scholar 

  • El-Akra N, Noirot A, Faye JC, Souchard JP (2006) Synthesis of estradiol-pheophorbide a conjugates: evidence of nuclear targeting, DNA damage and improved photodynamic activity in human breast cancer and vascular endothelial cells. Photochem Photobiol Sci 5:996–999

    Google Scholar 

  • Gal D, Ohashi M, MacDonald PC, Buchsbaum HJ, Simpson ER (1981) Low-density lipoprotein as a potential vehicle for chemotherapeutic agents and radionucleotides in the management of gynecologic neoplasms. Am J Obstet Gynecol 139:877–885

    Google Scholar 

  • Garcia G, Sol V, Lamarche F, Granet R, Guilloton M, Champavier Y, Krausz P (2006) Synthesis and photocytotoxic activity of new chlorin-polyamine conjugates. Bioorg Med Chem Lett 16:3188–3192

    Google Scholar 

  • Gudzinowicz BJ, Younkin BT Jr, Gudzinowicz MJ (1984) Drug dynamics for analytical clinical and biological chemists. Marcel Dekker, New York

    Google Scholar 

  • Hauet T, Yao ZX, Bose HS, Wall CT, Han Z, Li W, Hales DB, Miller WL, Culty M, Papadopoulos V (2005) Peripheral-type benzodiazepine receptor-mediated action of steroidogenic acute regulatory protein on cholesterol entry into leydig cell mitochondria. Mol Endocrinol 19:540–554

    Google Scholar 

  • Henderson BW, Bellnier DA, Greco WR, Sharma A, Pandey RK, Vaughan LA, Weishaupt KR, Dougherty TJ (1997) An in vivo quantitative structure-activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy. Cancer Res 57:4000–4007

    Google Scholar 

  • Ho YK, Smith RG, Brown MS, Goldstein JL (1978) Low-density lipoprotein (LDL) receptor activity in human acute myelogenous leukemia cells. Blood 52:1099–1114

    Google Scholar 

  • Jori G, Beltramini M, Reddi E, Salvato B, Pagnan A, Ziron L, Tomio L, Tsanov T (1984) Evidence for a major role of plasma lipoproteins as hematoporphyrin carriers in vivo. Cancer Lett 24:291–297

    Google Scholar 

  • Jori G, Reddi E, Cozzani I, Tomio L (1986) Controlled targeting of different subcellular sites by porphyrins in tumour-bearing mice. Br J Cancer 53:615–621

    Google Scholar 

  • Jori G, Tomio L, Reddi E, Rossi E, Corti L, Zorat PL, Calzavara F (1983) Preferential delivery of liposome-incorporated porphyrins to neoplastic cells in tumour-bearing rats. Br J Cancer 48:307–309

    Google Scholar 

  • Kandela K, Bartlett JA, Indig GL (2002) Effect of molecular structure on the selective phototoxicity of triarylmethane dyes towards tumor cells. Photochem Photobiol Sci 1:309–314

    Google Scholar 

  • Kelbauskas L, Dietel W (2002) Internalization of aggregated photosensitizers by tumor cells: subcellular time-resolved fluorescence spectroscopy on derivatives of pyropheophorbide-a ethers and chlorin e6 under femtosecond one- and two-photon excitations. Photochem Photobiol 76:686–694

    Google Scholar 

  • Kennedy JC, Pottier RH, Pross DC (1990) Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B 6:143–148

    Google Scholar 

  • Kepczynski M, Pandian RP, Smith KM, Ehrenberg B (2002) Do liposome-binding constants of porphyrins correlate with their measured and predicted partitioning between octanol and water? Photochem Photobiol 76:127–134

    Google Scholar 

  • Kessel D (1986) Sites of photosensitization by derivatives of hematoporphyrin. Photochem Photobiol 44:489–493

    Google Scholar 

  • Kessel D (1988) Interactions between porphyrins and mitochondrial benzodiazepine receptors. Cancer Lett 39:193–198

    Google Scholar 

  • Kessel D (1989) In vitro photosensitization with a benzoporphyrin derivative. Photochem Photobiol 49:579–582

    Google Scholar 

  • Kessel D, Antolovich M, Smith KM (2001) The role of the peripheral benzodiazepine receptor in the apoptotic response to photodynamic therapy. Photochem Photobiol 74:346–349

    Google Scholar 

  • Kessel D, Luguya R, Vicente MG (2003) Localization and photodynamic efficacy of two cationic porphyrins varying in charge distributions. Photochem Photobiol 78:431–435

    Google Scholar 

  • Kessel D, Luo Y (1998) Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol B 42:89–95

    Google Scholar 

  • Kessel D, Luo Y (2001) Intracellular sites of photodamage as a factor in apoptotic cell death. J Porphyr Phthalocyan 5:181–184

    Google Scholar 

  • Kessel D, Luo Y, Deng Y, Chang CK (1997) The role of subcellular localization in initiation of apoptosis by photodynamic therapy. Photochem Photobiol 65:422–426

    Google Scholar 

  • Kessel D, Morgan A, Garbo GM (1991) Sites and efficacy of photodamage by tin etiopurpurin in vitro using different delivery systems. Photochem Photobiol 54:193–196

    Google Scholar 

  • Kessel D, Thompson P, Saatio K, Nantwi KD (1987) Tumor localization and photosensitization by sulfonated derivatives of tetraphenylporphine. Photochem Photobiol 45:787–790

    Google Scholar 

  • Koudinova NV, Pinthus JH, Brandis A, Brenner O, Bendel P, Ramon J, Eshhar Z, Scherz A, Salomon Y (2003) Photodynamic therapy with Pd-Bacteriopheophorbide (TOOKAD): successful in vivo treatment of human prostatic small cell carcinoma xenografts. Int J Cancer 104:782–789

    Google Scholar 

  • Kozikowski AP, Kotoula M, Ma D, Boujrad N, Tuckmantel W, Papadopoulos V (1997) Synthesis and biology of a 7-nitro-2,1,3-benzoxadiazol-4-yl derivative of 2-phenylindole-3-acetamide: a fluorescent probe for the peripheral-type benzodiazepine receptor. J Med Chem 40:2435–2439

    Google Scholar 

  • Krasnovsky AA Jr, Neverov KV, Egorov S, Roeder B, Levald T (1990) Photophysical studies of pheophorbide a and pheophytin a. Phosphorescence and photosensitized singlet oxygen luminescence. J Photochem Photobiol B 5:245–254

    Google Scholar 

  • Kuzelova K, Brault D (1994) Kinetic and equilibrium studies of porphyrin interactions with unilamellar lipidic vesicles. Biochemistry 33:9447–9459

    Google Scholar 

  • Kuzelova K, Brault D (1995) Interactions of dicarboxylic porphyrins with unilamellar lipidic vesicles: drastic effects of pH and cholesterol on kinetics. Biochemistry 34:11245–11255

    Google Scholar 

  • Laville I, Figueiredo T, Loock B, Pigaglio S, Maillard P, Grierson DS, Carrez D, Croisy A, Blais J (2003) Synthesis, cellular internalization and photodynamic activity of glucoconjugated derivatives of tri and tetra(meta-hydroxyphenyl)chlorins. Bioorg Med Chem 11:1643–1652

    Google Scholar 

  • Levy JG, Obochi M (1996) New applications in photodynamic therapy. Introduction. Photochem Photobiol 64:737–739

    Google Scholar 

  • Liu J, Rone MB, Papadopoulos V (2006) Protein-protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J Biol Chem 281:38879–38893

    Google Scholar 

  • Luo Y, Chang CK, Kessel D (1996) Rapid initiation of apoptosis by photodynamic therapy. Photochem Photobiol 63:528–534

    Google Scholar 

  • Luo Y, Kessel D (1997) Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochem Photobiol 66:479–483

    Google Scholar 

  • MacDonald IJ, Morgan J, Bellnier DA, Paszkiewicz GM, Whitaker JE, Litchfield DJ, Dougherty TJ (1999) Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives. Photochem Photobiol 70:789–797

    Google Scholar 

  • Malham GM, Thomsen RJ, Finlay GJ, Baguley BC (1996) Subcellular distribution and photocytotoxicity of aluminium phthalocyanines and haematoporphyrin derivative in cultured human meningioma cells. Br J Neurosurg 10:51–57

    Google Scholar 

  • Maman N, Brault D (1998) Kinetics of the interactions of a dicarboxylic porphyrin with unilamellar lipidic vesicles: interplay between bilayer thickness and pH in rate control. Biochim Biophys Acta 1414:31–42

    Google Scholar 

  • Maman N, Dhami S, Phillips D, Brault D (1999) Kinetic and equilibrium studies of incorporation of di-sulfonated aluminum phthalocyanine into unilamellar vesicles. Biochim Biophys Acta 1420:168–178

    Google Scholar 

  • Matroule JY, Carthy CM, Granville DJ, Jolois O, Hunt DW, Piette J (2001) Mechanism of colon cancer cell apoptosis mediated by pyropheophorbide-a methylester photosensitization. Oncogene 20:4070–4084

    Google Scholar 

  • Matroule JY, Hellin AC, Morliere P, Fabiano AS, Santus R, Merville MP, Piette J (1999) Role of nuclear factor-kappa B in colon cancer cell apoptosis mediated by aminopyropheophorbide photosensitization. Photochem Photobiol 70:540–548

    Google Scholar 

  • Miller JW, Schmidt-Erfurth U, Sickenberg M, Pournaras CJ, Laqua H, Barbazetto I, Zografos L, Piguet B, Donati G, Lane AM, Birngruber R, van den Berg H, Strong A, Manjuris U, Gray T, Fsadni M, Bressler NM, Gragoudas ES (1999) Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of a single treatment in a phase 1 and 2 study. Arch Ophthalmol 117:1161–1173

    Google Scholar 

  • Moan J (1984) The photochemical yield of singlet oxygen from porphyrins in different states of aggregation. Photochem Photobiol 39:445–449

    Article  Google Scholar 

  • Moan J, Christensen T, Jacobsen PB (1984) Photodynamic effects on cells in vitro labelled with hematoporphyrin derivative. Photobiochem Photobiophys 7: 349–358

    Google Scholar 

  • Mojzisova H, Bonneau S, Vever-Bizet C, Brault D (2007) The pH-dependent distribution of the photosensitizer chlorin e6 among plasma proteins and membranes: a physico-chemical approach. Biochim Biophys Acta 1768:366–374

    Google Scholar 

  • Morgan J, Oseroff AR (2001) Mitochondria-based photodynamic anti-cancer therapy. Adv Drug Deliv Rev 49:71–86

    Google Scholar 

  • Morgan J, Potter WR, Oseroff AR (2000) Comparison of photodynamic targets in a carcinoma cell line and its mitochondrial DNA-deficient derivative. Photochem Photobiol 71:747–757

    Google Scholar 

  • Morris RL, Varnes ME, Kenney ME, Li YS, Azizuddin K, McEnery MW, Oleinick NL (2002) The peripheral benzodiazepine receptor in photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Photochem Photobiol 75:652–661

    Google Scholar 

  • Oleinick NL, Morris RL, Belichenko I (2002) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci 1:1–21

    Google Scholar 

  • Oseroff AR, Ohuoha D, Ara G, McAuliffe D, Foley J, Cincotta L (1986) Intramitochondrial dyes allow selective in vitro photolysis of carcinoma cells. Proc Natl Acad Sci USA 83:9729–9733

    ADS  Google Scholar 

  • Plaetzer K, Kiesslich T, Krammer B, Hammerl P (2002) Characterization of the cell death modes and the associated changes in cellular energy supply in response to AlPcS4-PDT. Photochem Photobiol Sci 1:172–177

    Google Scholar 

  • Reddi E, Zhou C, Biolo R, Menegaldo E, Jori G (1990) Liposome- or LDL-administered Zn (II)-phthalocyanine as a photodynamic agent for tumours. I. Pharmacokinetic properties and phototherapeutic efficiency. Br J Cancer 61:407–411

    Google Scholar 

  • Reyftmann JP, Morliere P, Goldstein S, Santus R, Dubertret L, Lagrange D (1984) Interaction of human serum low density lipoproteins with porphyrins: a spectroscopic and photochemical study. Photochem Photobiol 40:721–729

    Google Scholar 

  • Ricchelli F, Franchi L, Miotto G, Borsetto L, Gobbo S, Nikolov P, Bommer JC, Reddi E (2005) Meso-substituted tetra-cationic porphyrins photosensitize the death of human fibrosarcoma cells via lysosomal targeting. Int J Biochem Cell Biol 37:306–319

    Google Scholar 

  • Richter AM, Jain AK, Canaan AJ, Waterfield E, Sternberg ED, Levy JG (1992) Photosensitizing efficiency of two regioisomers of the benzoporphyrin derivative monoacid ring A (BPD-MA). Biochem Pharmacol 43:2349–2358

    Google Scholar 

  • Richter AM, Waterfield E, Jain AK, Canaan AJ, Allison BA, Levy JG (1993) Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem Photobiol 57:1000–1006

    Google Scholar 

  • Ruck A, Kollner T, Dietrich A, Strauss W, Schneckenburger H (1992) Fluorescence formation during photodynamic therapy in the nucleus of cells incubated with cationic and anionic water-soluble photosensitizers. J Photochem Photobiol B 12:403–412

    Google Scholar 

  • Sailer R, Strauss WS, Emmert H, Stock K, Steiner R, Schneckenburger H (2000) Plasma membrane associated location of sulfonated meso-tetraphenylporphyrins of different hydrophilicity probed by total internal reflection fluorescence spectroscopy. Photochem Photobiol 71:460–465

    Google Scholar 

  • Sailer R, Strauss WS, Wagner M, Emmert H, Schneckenburger H (2007) Relation between intracellular location and photodynamic efficacy of 5-aminolevulinic acid-induced protoporphyrin IX in vitro. Comparison between human glioblastoma cells and other cancer cell lines. Photochem Photobiol Sci 6:145–151

    Google Scholar 

  • Salet C, Moreno G (1981) Photodynamic effects of haematoporphyrin on respiration and calcium uptake in isolated mitochondria. Int J Radiat Biol Relat Stud Phys Chem Med 39:227–230

    Google Scholar 

  • Salet C, Moreno G (1990) Photosensitization of mitochondria. Molecular and cellular aspects. J Photochem Photobiol B 5:133–150

    Google Scholar 

  • Salet C, Moreno G, Ricchelli F, Bernardi P (1997) Singlet oxygen produced by photodynamic action causes inactivation of the mitochondrial permeability transition pore. J Biol Chem 272:21938–21943

    Google Scholar 

  • Sasnouski S, Zorin V, Khludeyev I, D’Hallewin MA, Guillemin F, Bezdetnaya L (2005) Investigation of Foscan interactions with plasma proteins. Biochim Biophys Acta 1725:394–402

    Google Scholar 

  • Schmidt-Erfurth U, Bauman W, Gragoudas E, Flotte TJ, Michaud NA, Birngruber R, Hasan T (1994) Photodynamic therapy of experimental choroidal melanoma using lipoprotein-delivered benzoporphyrin. Ophthalmology 101:89–99

    Google Scholar 

  • Schmidt-Erfurth U, Diddens H, Birngruber R, Hasan T (1997) Photodynamic targeting of human retinoblastoma cells using covalent low-density lipoprotein conjugates. Br J Cancer 75:54–61

    Google Scholar 

  • Schneider R, Schmitt F, Frochot C, Fort Y, Lourette N, Guillemin F, Muller JF, Barberi-Heyob M (2005) Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy. Bioorg Med Chem 13:2799–2808

    Google Scholar 

  • Selbo PK, Sivam G, Fodstad O, Sandvig K, Berg K (2001) In vivo documentation of photochemical internalization, a novel approach to site specific cancer therapy. Int J Cancer 92:761–766

    Google Scholar 

  • Sharman WM, van Lier JE, Allen CM (2004) Targeted photodynamic therapy via receptor mediated delivery systems. Adv Drug Deliv Rev 56:53–76

    Google Scholar 

  • Soukos NS, Hamblin MR, Hasan T (1997) The effect of charge on cellular uptake and phototoxicity of polylysine chlorin(e6) conjugates. Photochem Photobiol 65:723–729

    Google Scholar 

  • Spikes JD (1982) Photodynamic reactions in photomedicine. In: Regan JD, Parrish JA (eds) The Science of Photomedicine. Plenum Press, New York, pp 113–144

    Google Scholar 

  • Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, Snipas SJ, Ellerby LM, Bredesen D, Freeze H, Abrahamson M, Bromme D, Krajewski S, Reed JC, Yin XM, Turk V, Salvesen GS (2001) Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 276:3149–3157

    Google Scholar 

  • Teiten MH, Bezdetnaya L, Morliere P, Santus R, Guillemin F (2003) Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan localisation in cultured tumour cells. Br J Cancer 88:146–152

    Google Scholar 

  • van den Bergh H (1998) On the evolution of some endoscopic light delivery systems for photodynamic therapy. Endoscopy 30:392–407

    Article  Google Scholar 

  • Venturini I, Zeneroli ML, Corsi L, Avallone R, Farina F, Alho H, Baraldi C, Ferrarese C, Pecora N, Frigo M, Ardizzone G, Arrigo A, Pellicci R, Baraldi M (1998) Up-regulation of peripheral benzodiazepine receptor system in hepatocellular carcinoma. Life Sci 63:1269–1280

    Google Scholar 

  • Verma A, Facchina SL, Hirsch DJ, Song SY, Dillahey LF, Williams JR, Snyder SH (1998) Photodynamic tumor therapy: mitochondrial benzodiazepine receptors as a therapeutic target. Mol Med 4:40–45

    Google Scholar 

  • Verma A, Nye JS, Snyder SH (1987) Porphyrins are endogenous ligands for the mitochondrial (peripheral-type) benzodiazepine receptor. Proc Natl Acad Sci USA 84:2256–2260

    ADS  Google Scholar 

  • Vever-Bizet C, Brault D (1993) Kinetics of incorporation of porphyrins into small unilamellar vesicles. Biochim Biophys Acta 1153:170–174

    Google Scholar 

  • Weishaupt KR, Gomer CJ, Dougherty TJ (1976) Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res 36:2326–2329

    Google Scholar 

  • Wood SR, Holroyd JA, Brown SB (1997) The subcellular localization of Zn(II) phthalocyanines and their redistribution on exposure to light. Photochem Photobiol 65:397–402

    Google Scholar 

  • Woodburn KW, Vardaxis NJ, Hill JS, Kaye AH, Phillips DR (1991) Subcellular localization of porphyrins using confocal laser scanning microscopy. Photochem Photobiol 54:725–732

    Google Scholar 

  • Young LH, Howard MA, Hu LK, Kim RY, Gragoudas ES (1996) Photodynamic therapy of pigmented choroidal melanomas using a liposomal preparation of benzoporphyrin derivative. Arch Ophthalmol 114:186–192

    Google Scholar 

  • Zhou CN, Milanesi C, Jori G (1988) An ultrastructural comparative evaluation of tumors photosensitized by porphyrins administered in aqueous solution, bound to liposomes or to lipoproteins. Photochem Photobiol 48:487–492

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halina Mojzisova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mojzisova, H., Bonneau, S. & Brault, D. Structural and physico-chemical determinants of the interactions of macrocyclic photosensitizers with cells. Eur Biophys J 36, 943–953 (2007). https://doi.org/10.1007/s00249-007-0204-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0204-9

Keywords

Navigation