Skip to main content

Advertisement

Log in

Accumulation of As, Pb, and Cu Associated with the Recent Sedimentary Processes in the Colorado Delta, South of the United States-Mexico Boundary

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Sediment cores from the Colorado River (CR) remnant delta were used to assess the changing sedimentation and pollutant deposition processes in response to extensive human manipulation of the river. The cores are formed of alternating layers of clays and silts, with isolated sandy horizons. The clayey units are interpreted as periods of flood flows into this low gradient and meandering estuary after dam construction in the United States. The geochemistry of these sediments is particular because of the association of MnO with CaO rather than with the Fe2O3-rich clays. Past pollution of the CR delta by As, and probably also Pb and Cu, is recorded in some cores. Enrichment factors (EFs) >1 for these elements and their statistical association suggest anthropogenic inputs. The most likely sources for these element enrichments (especially As) are the arsenate-based pesticides used intensively in the area during the first half of the 20th century. The transport of these elements from the nearby agricultural lands into the present river reaches appears to have been driven in part by flooding events of the CR. Flushing by river and tide flows appear to be responsible of a lower pollutant deposition in the CR compared to the adjacent Hardy River (HR). Arsenic in the buried clay units of the HR has concentrations above the probable toxic effect level (PEL) for dwelling organisms, with maximum concentrations of 30 μg g−1. Excess 210Pb activities (210Pbxs) indicate that fluxes of this unsupported atmospheric isotope were not constant in this estuarine environment. However, the presence of 210Pbxs does indicate that these sediments accumulated during the last ~100 years. Aproximate sediment ages were estimated from the correlation of historic flooding events with the interpretation of the stratigraphic record. They are in fair agreement with the reported onset of DDT metabolites at the bottom of one core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acosta y Asociados (2001) Inventario de sitios en México con concentraciones elevadas de mercurio. Comisión para la Cooperación Ambiental, INE, México

    Google Scholar 

  • All J (2006) Environmental assessment: Colorado River floods, droughts, and shrimp fishing in the Upper Gulf of California, Mexico. Environ Manage 37:111–125. doi:10.1007/s00267-004-0184-9

    Article  Google Scholar 

  • Appleby PG, Oldfield F (1978) The calculation of Lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8. doi:10.1016/S0341-8162(78)80002-2

    Article  CAS  Google Scholar 

  • Ayuso RA, Foley NK (2002) Arsenic in New England: mineralogical and geochemical studies of sources and enrichment pathways. U.S. Geol Surv Rep 02-454. Available at: http://pubs.usgs.gov/of/2002/ofr-02-454/. Accessed March 2008

  • Bargagli R, Cateni D, Nelli L, Olmastroni S, Zagarese B (1997) Environmental impact of trace element emissions from geothermal power plants. Arch Environ Contam Toxicol 33:172–181. doi:10.1007/s002449900239

    Article  CAS  Google Scholar 

  • Baumgartner T, Ferreira-Bartrina V, Schrader H, Soutar A (1985) A 20-year varve record of siliceous phytoplankton variability in the central Gulf of California. Mar Geol 64:113–129. doi:10.1016/0025-3227(85)90163-X

    Article  Google Scholar 

  • Bruland KW, Koide M, Goldberg ED (1974) The comparative marine geochemistries of lead 210 and radium 226. J Geophys Res 79:3083–3086. doi:10.1029/JC079i021p03083

    Article  CAS  Google Scholar 

  • Cohen MJ, Henges-Jeck C, Castillo-Moreno G (2001) A preliminary water balance for the Colorado River delta, 1992–1998. J Arid Environ 49:35–48. doi:10.1006/jare.2001.0834

    Article  Google Scholar 

  • Covelli S, Fontolan G (1997) Application of a normalization procedure in determining regional geochemical baselines. Environ Geol 30:34–45. doi:10.1007/s002540050130

    Article  CAS  Google Scholar 

  • Daesslé LW, Ramos SE, Carriquiry JD, Camacho VF (2002) Clay dispersal and the geochemistry of manganese in the Northern Gulf of California. Cont Shelf Res 22:1311–1323. doi:10.1016/S0278-4343(02)00007-9)

    Article  Google Scholar 

  • Daesslé LW, Malagamba J, Carriquiry JD, Camacho-Ibar VF, Álvarez LG, Ortiz MC, Ramos SE (2004a) Recent sources and sinks of sediments, metals and phosphorus in the northern Gulf of California. In: Proceedings of the Gulf of California Conference June 13–15, 2004. Arizona-Sonora Desert Museum, Tucson, p 140

  • Daesslé LW, Camacho-Ibar VF, Carriquiry JD, Ortiz-Hernández MC (2004b) The geochemistry and sources of metals and phosphorus in the recent sediments from the Northern Gulf California. Cont Shelf Res 24:2093–2106. doi:10.1016/j.csr.2004.06.022

    Article  Google Scholar 

  • D’Angelo D, Norton SA, Loiselle MC (1996) Historical uses and fate of arsenic in Maine. Water Research Institute Completion Report 1986. University of Maine, Orono, p 24

    Google Scholar 

  • DGE (1993) Plan de Ordenamiento Ecológico del Estado de Baja California. Dirección General de Ecología, Gobierno del Estado de Baja California, México, p 122

    Google Scholar 

  • García-Hernández J, King KA, Velasco AL, Shumilin E, Mora MA, Glenn EP (2001) Selenium, selected inorganic elements, and organochlorine pesticides in bottom material and biota from the Colorado River delta. J Arid Environ 49:65–89. doi:10.1006/jare.2001.0836

    Article  Google Scholar 

  • Glenn EP, Lee C, Felger R, Zengel S (1996) Effects of water management on the wetlands of the Colorado River delta, Mexico. Conserv Biol 10:1175–1186. doi:10.1046/j.1523-1739.1996.10041175.x

    Article  Google Scholar 

  • Glenn EP, Flessa KW, Cohen MJ, Nagler PL, Rowell K, Zamora-Arroyo F (2007) Just add water and the Colorado River still reaches the sea. Environ Manage 40:1–6. doi:10.1007/s00267-006-0070-8

    Article  Google Scholar 

  • Gutiérrez-Galindo EA, Flores-Muñoz G, Aguilar-Flores A (1988) Mercury in freshwater fish and clams from the Cerro Prieto Geothermal field of Baja Califonia, México. B Environ Contam Toxicol 41:201–207. doi:10.1007/BF01705431

    Article  Google Scholar 

  • Hart RJ, Tayloe HE, Antweiler RC, Graham DD, Fisk GG, Riggins SG, Flynn ME (2005) Sediment chemistry of the Colorado River Delta of Lake Powell, Utah, 2001. USGS Open File Report 2005–1178. U.S. Department of the Interior, Washington, DC, p 33

    Google Scholar 

  • Horowitz AJ, Elrick KA, Smith JJ (2001) Estimating suspended sediment and trace element fluxes in large river basins: methodological considerations as applied to NASQAN program. Hydrol Process 15:1107–1132. doi:10.1002/hyp.206

    Article  Google Scholar 

  • Hunter KA (1983) On the estuarine mixing of dissolved substances in relation to colloid stability and surface properties. Geochim Cosmochim Acta 47:467–473. doi:10.1016/0016-7037(83)90269-7

    Article  CAS  Google Scholar 

  • International Border Water Commission (2008) Colorado River at Southerly International Boundary. Available at: http://www.ibwc.state.gov/wad/ddqsibco.htm. Accessed March 2008

  • Imperial Valley/Mexicali Air Quality Taskforce (2007) Minutes of the meeting at UABC, Mexicali Campus, January 11, 2007, Mexicali, Baja California. Available at: http://www.epa.gov/border2012/docs/ workgroup-immex/ImperialMeetingMinutes1-11-07.pdf. Accessed April 2008

  • Joshi SR (1987) Nondestructive determination of lead-210 and radium-226 in sediments by direct photon analysis. J Radioanal Nucl Chem 116:169–182. doi:10.1007/BF02037220

    Article  CAS  Google Scholar 

  • Kober B, Wessels M, Bollhofer A, Mangini A (1999) Pb isotopes in sediments of Lake Constance, Central Europe constrain the heavy metal pathways and the pollution history of the catchment, the lake and the regional atmosphere. Geochim Cosmochim Acta 63:1293–1303. doi:10.1016/S0016-7037(99)00064-2

    Article  CAS  Google Scholar 

  • Lippmann M, Truesdell A, Frye G (1999) The Cerro Prieto and Salton Sea geothermal fields—Are they really alike? In: Proceedings of the Twenty-Fourth Workshop on Geothermal Reservoir Engineering January 25–27, 1999. Stanford University, Stanford, CA, SGP-TR-162, pp 1–10

  • Luecke D, Pitt J, Congdon C, Glenn E, Valdes C, Briggs M (1999) A delta once more: restoring riparian and wetland habitat in the Colorado River Delta. Environmental Defense Fund Publications, Boulder, CO, p 51

    Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  Google Scholar 

  • Matsui M, Hose JE, Garrahan P, Jordan GA (1992) Developmental defects in fish embryos from Salton Sea, California. B Environ Contam Toxicol 48:914–920. doi:10.1007/BF00201154

    CAS  Google Scholar 

  • Mora MA, Anderson DW (1991) Seasonal and geographical variation of organochlorine residues in birds from Northwest Mexico. Arch Environ Contam Toxicol 21:541–548. doi:10.1007/BF01183876

    Article  CAS  Google Scholar 

  • Moreno-Mena JA, López-Limón MG (2005) Desarrollo agrícola y uso de agroquímicos en el valle de Mexicali. Estud Fronter UABC Mex 6:119–153

    Google Scholar 

  • Palacios-Fest MR (1990) The modern Colorado-River delta. In: Davis OK (ed) Quaternary geology of Bahía Adair and the Gran Desierto region. International Geological Correlation Program, p 31

  • Persaud D, Jaagumagi R, Hayton A (1993) Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy, p 24

  • Peryea FJ (1998) Historical use of lead arsenate insecticides, resulting soil contamination and implications for soil remediation. Proceedings of the 16th World Congress of Soil Science, Montpellier, France, 20–26 August 1998. Available at: http://soils.tfrec.wsu.edu/leadhistory.htm. Accessed March 2008

  • Preiss N, Mélières MA, Pourchet M (1996) A complitation of data on lead 210 concentration in surface air and fluxes at the air-surface and water-sediment interfaces. J Geophys Res 101(D):28847–28862

    Article  CAS  Google Scholar 

  • Rama KM, Koide M, Goldberg ED (1961) Lead-210 in natural waters. Science 134:98–99. doi:10.1126/science.134.3472.98

    Article  CAS  Google Scholar 

  • Ramos-Delgado NAJ (2008) Plaguicidas organoclorados en sedimentos del delta del Río Colorado. Unpublished MSc thesis. Universidad Autónoma de Baja California, Mexico, p 80.

  • Randle TJ, Lyons JK, Christensen RJ, Stephen RD (2006) Colorado river ecosystem sediment augmentation approval engineering report. Reclamation managing water in the West. U.S. Department of the Interior, Washington, DC, p 78

    Google Scholar 

  • Richardson CW, Price JD, Burnett E (1978) Arsenic concentrations in surface runoff from small watersheds in Texas. J Environ Qual 7:189–192

    Article  CAS  Google Scholar 

  • Robinson GR Jr, Ayuso RA (2004) Use of spatial statistics and isotopic tracers to measure the influence of arsenical pesticide use on stream sediment chemistry in New England, USA. Appl Geochem 19:1097–1110. doi:10.1016/j.apgeochem.2004.01.009

    Article  CAS  Google Scholar 

  • Ruiz-Fernández AC, Hillaire-Marcel C, Ghaleb B, Soto-Jiménez M, Páez-Osuna F (2002) Recent sedimentary history of anthropogenic impacts on the Culiacan River Estuary, northwestern Mexico: geochemical evidence from organic matter and nutrients. Environ Pollut 118:365–377. doi:10.1016/S0269-7491(01)00287-1

    Article  Google Scholar 

  • Shumilin EN, Carriquiry JD, Camacho-Ibar VF, Sapozhnikov D, Kalmykov S, Sánchez A, Aguíñiga-García S, Sapozhnikov Y (2002) Spatial and vertical distributions of elements in sediments of the Colorado River Delta and Upper Gulf of California. Mar Chem 79:113–131. doi:10.1016/S0304-4203(02)00059-2

    Article  CAS  Google Scholar 

  • Smith SL, MacDonald DD, Keenleyside KA, Ingersoll CG, Field LJ (1996) A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. J Great Lakes Res 22:624–638

    Article  CAS  Google Scholar 

  • Sykes G (1937) Delta, estuary, and lower portion of the channel of the Colorado River 1933–1935. Carnegie Institution of Washington, Washington, DC, p 70

    Google Scholar 

  • Topping DJ, Rubin DM, Vierra LE Jr (2000) Colorado River sediment transport, 1. Natural sediment supply limitation and the influence of Glen Canyon Dam. Water Resour Res 36:515–542. doi:10.1029/1999WR900285

    Article  CAS  Google Scholar 

  • Valdés-Casillas C, Hinojosa-Huerta O, Muñoz-Viveros M, Zamora-Arroyo F, Carrillo-Guerrero Y, Delgado-Garcia S, Lopez-Camacho M, Glenn EP, Garcia J, Riley J, Baumgartner D, Briggs M, Lee CT, Chavarria-Correa E, Congdon C, Luecke D (1998) Information database and local outreach program for the restoration of the Hardy River wetlands, lower Colorado River delta, Baja California and Sonora, Mexico. Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), Campus Guaymas, p 102

  • Venkatesan MI, de Leon RP, van Geen A, Luoma SN (1999) Chlorinated hydrocarbon pesticides and polychlorinated biphenyls in sediment cores from San Francisco Bay. Mar Chem 64:85–97. doi:10.1016/S0304-4203(98)90086-X

    Article  CAS  Google Scholar 

  • Yarto-Ramírez M, Gavilán-García A, Castro-Díaz J (2004) La contaminación por mercurio en México. Gaceta Ecol INE Mex 72:21–34

    Google Scholar 

Download references

Acknowledgments

We acknowledge the field support of E. Ortiz, N. A. Ramos, and E. Ceseña and the laboratory assistance in Germany of R. Chandrajith, A. Baier, D. Lutz, M. Hertel, and M. Döni. K.L.I. and M.M. were sponsored by a scholarship from CONACYT. Financial support from UABC-IIO-5038 and PROMEP-UABC-CA130-2007 for this project is acknowledged, as well as SEP-FOMES 1999–2001 grants for the purchase of equipment at UABC. Thanks go to the three anonymous reviewers and to V. Camacho, who helped us to significantly improve an earlier version of this work. The research was carried out during a visit by L.W.D. at Friedrich-Alexander Universität Erlangen-Nürnberg, Germany, kindly sponsored by the Alexander von Humboldt Foundation through a Georg Forster fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. W. Daesslé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daesslé, L.W., Lugo-Ibarra, K.C., Tobschall, H.J. et al. Accumulation of As, Pb, and Cu Associated with the Recent Sedimentary Processes in the Colorado Delta, South of the United States-Mexico Boundary. Arch Environ Contam Toxicol 56, 680–692 (2009). https://doi.org/10.1007/s00244-008-9218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9218-2

Keywords

Navigation